OpenGL 4.3 快速参考卡



字数:0 关键词: OpenGL 图形/图像处理 ©2012 Khronos Group - Rev. 0812 OpenGL 4.3 API Reference Card Page 1  OpenGL Operation Floating-Point Numbers [2.3.3] 16-Bit 1-bit sign, 5-bit exponent, 10-bit mantissa Unsigned 11-Bit no sign bit, 5-bit exponent, 6-bit mantissa Unsigned 10-Bit no sign bit, 5-bit exponent, 5-bit mantissa Command Letters [Table 2.2] Letters are used in commands to denote types. b - byte (8 bits) ub - ubyte (8 bits) s - short (16 bits) us - ushort (16 bits) i - int (32 bits) ui - uint (32 bits) i64 - int64 (64 bits) ui64 - uint64 (64 bits) f - float (32 bits) d - double (64 bits) OpenGL® is the only cross-platform graphics API that enables developers of software for PC, workstation, and supercomputing hardware to create high- performance, visually-compelling graphics software applications, in markets such as CAD, content creation, energy, entertainment, game development, manufacturing, medical, and virtual reality. Specifications are available at • see FunctionName refers to functions on this reference card. • [n.n.n] and [Table n.n] refer to sections and tables in the OpenGL 4.3 core specification. • [n.n.n] refers to sections in the OpenGL Shading Language 4.30 specification. OpenGL Command Syntax [2.2] GL commands are formed from a return type, a name, and optionally up to 4 characters (or character pairs) from the Command Letters table (to the left), as shown by the prototype: return-type Name{1234}{b s i i64 f d ub us ui ui64}{v} ([args ,] T arg1 , . . . , T argN [, args]); The arguments enclosed in brackets ([args ,] and [, args]) may or may not be present. The argument type T and the number N of arguments may be indicated by the command name suffixes. N is 1, 2, 3, or 4 if present. If “v” is present, an array of N items is passed by a pointer. For brevity, the OpenGL documentation and this reference may omit the standard prefixes. The actual names are of the forms: glFunctionName(), GL_CONSTANT, GLtype Buffer Objects [6] void GenBuffers(sizei n, uint *buffers); void DeleteBuffers(sizei n, const uint *buffers); Creating and Binding Buffer Objects[6.1] void BindBuffer(enum target, uint buffer); target: PIXEL_{PACK, UNPACK}_BUFFER, {UNIFORM, ARRAY, TEXTURE}_BUFFER, COPY_{READ, WRITE}_BUFFER, {DISPATCH, DRAW}_INDIRECT_BUFFER, {ATOMIC_COUNTER, ELEMENT_ARRAY}_BUFFER, {SHADER_STORAGE ,TRANSFORM_FEEDBACK}_BUFFER void BindBufferRange(enum target, uint index, uint buffer, intptr offset, sizeiptr size); target: ATOMIC_COUNTER_BUFFER, {SHADER_STORAGE, UNIFORM}_BUFFER, TRANSFORM_FEEDBACK_BUFFER void BindBufferBase(enum target, uint index, uint buffer); target: see BindBufferRange Creating/Clearing Buffer Object Data [6.2] void BufferSubData(enum target, intptr offset, sizeiptr size, const void *data); target: see BindBuffer void BufferData(enum target, sizeiptr size, const void *data, enum usage); target: see BindBuffer usage: STREAM_{DRAW, READ, COPY}, {DYNAMIC, STATIC}_{DRAW, READ, COPY} void ClearBufferSubData(enum target, enum internalFormat, intptr offset, sizeiptr size, enum format, enum type, const void *data); target: see BindBuffer internalformat: see TexBuffer on pg. 2 of this card format: RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA,{RED, GREEN, BLUE, RG, RGB}_INTEGER, {RGBA, BGR, BGRA} _INTEGER, STENCIL_INDEX, DEPTH_{COMPONENT, STENCIL} void ClearBufferData(enum target, enum internalformat, enum format, enum type, const void *data); target, internalformat, format: see ClearBufferSubData Mapping/Unmapping Buffer Data[6.3] void *MapBufferRange(enum target, intptr offset, sizeiptr length, bitfield access); access: The logical OR of MAP_{READ, WRITE}_BIT, MAP_INVALIDATE_{BUFFER, RANGE}_BIT, MAP_{FLUSH_EXPLICIT, UNSYNCHRONIZED}_BIT target: see BindBuffer void *MapBuffer(enum target, enum access); access: READ_ONLY, WRITE_ONLY, READ_WRITE void FlushMappedBufferRange( enum target, intptr offset, sizeiptr length); target: see BindBuffer boolean UnmapBuffer(enum target); target: see BindBuffer Invalidate Buffer Data [6.5] void InvalidateBufferSubData(uint buffer, intptr offset, sizeiptr length); void InvalidateBufferData(uint buffer); Copying Between Buffers [6.6] void CopyBufferSubData(enum readtarget, enum writetarget, intptr readoffset, intptr writeoffset, sizeiptr size); readtarget and writetarget: see BindBuffer Buffer Object Queries [6, 6.7] boolean IsBuffer(uint buffer); void GetBufferParameteriv(enum target, enum pname, int *data); target: see BindBuffer pname: BUFFER_SIZE, BUFFER_USAGE, BUFFER_ACCESS{_FLAGS}, BUFFER_MAPPED, BUFFER_MAP_{OFFSET, LENGTH} void GetBufferParameteri64v(enum target, enum pname, int64 *data); target: see BindBuffer pname: see GetBufferParameteriv, void GetBufferSubData(enum target, intptr offset, sizeiptr size, void *data); target: see BindBuffer void GetBufferPointerv(enum target, enum pname, void **params); target: see BindBuffer pname: BUFFER_MAP_POINTER OpenGL Errors [2.3.1] enum GetError(void); Returns the numeric error code. Shaders and Programs Shader Objects [7.1-2] uint CreateShader(enum type); type: TESS_{EVALUATION, CONTROL}_SHADER, {COMPUTE, FRAGMENT, GEOMETRY, VERTEX}_SHADER void ShaderSource(uint shader, sizei count, const char * const * string, const int *length); void CompileShader(uint shader); void ReleaseShaderCompiler(void); void DeleteShader(uint shader); boolean IsShader(uint shader); void ShaderBinary(sizei count, const uint *shaders, enum binaryformat, const void *binary, sizei length); Program Objects [7.3] uint CreateProgram(void); void AttachShader(uint program, uint shader); void DetachShader(uint program, uint shader); void LinkProgram(uint program); void UseProgram(uint program); uint CreateShaderProgramv(enum type, sizei count, const char * const * strings); void ProgramParameteri(uint program, enum pname, int value); pname: PROGRAM_SEPARABLE, PROGRAM_BINARY_RETRIEVABLE_HINT value: TRUE, FALSE void DeleteProgram(uint program); boolean IsProgram(uint program); Program Interfaces [7.3.1] void GetProgramInterfaceiv(uint program, enum programInterface, enum pname, int *params); programInterface: UNIFORM{_BLOCK}, PROGRAM_{INPUT, OUTPUT}, BUFFER_VARIABLE, SHADER_STORAGE_BLOCK, ATOMIC_COUNTER_BUFFER, {GEOMETRY, VERTEX}_SUBROUTINE, TESS_{CONTROL, EVALUATION}_SUBROUTINE, {FRAGMENT, COMPUTE}_SUBROUTINE, TESS_{CONTROL, EVALUATION}_SUBROUTINE_UNIFORM, {GEOMETRY, VERTEX}_SUBROUTINE_UNIFORM, {FRAGMENT, COMPUTE}_SUBROUTINE_UNIFORM, TRANSFORM_FEEDBACK_VARYING pname: ACTIVE_RESOURCES, MAX_NAME_LENGTH, MAX_NUM_ACTIVE_VARIABLES, MAX_NUM_COMPATIBLE_SUBROUTINES uint GetProgramResourceIndex( uint program, enum programInterface, const char *name); void GetProgramResourceName( uint program, enum programInterface, uint index, sizei bufSize, sizei *length, char *name); void GetProgramResourceiv(uint program, enum programInterface, uint index, sizei propCount, const enum *props, sizei bufSize, sizei *length, int *params); *props: [see Table 7.2] int GetProgramResourceLocation( uint program, enum programInterface, const char *name); int GetProgramResourceLocationIndex( uint program, enum programInterface, const char *name); Program Pipeline Objects [7.4] void GenProgramPipelines(sizei n, uint *pipelines); void DeleteProgramPipelines(sizei n, const uint *pipelines); void BindProgramPipeline(uint pipeline); void UseProgramStages(uint pipeline, bitfield stages, uint program); stages: ALL_SHADER_BITS or the bitwise OR of TESS_{CONTROL, EVALUATION}_SHADER_BIT, {VERTEX, GEOMETRY, FRAGMENT}_SHADER_BIT, COMPUTE_SHADER_BIT void ActiveShaderProgram(uint pipeline, uint program); Program Binaries [7.5] void GetProgramBinary(uint program, sizei bufSize, sizei *length, enum *binaryFormat, void *binary); void ProgramBinary(uint program, enum binaryFormat, const void *binary, sizei length); Uniform Variables [7.6] int GetUniformLocation(uint program, const char *name); void GetActiveUniformName(uint program, uint uniformIndex, sizei bufSize, sizei *length, char *uniformName); void GetUniformIndices(uint program, sizei uniformCount, const char **uniformNames, uint *uniformIndices); (Continued on next page >) Synchronization Flush and Finish [2.3.2] void Flush(void); void Finish(void); Sync Objects and Fences [4.1] void DeleteSync(sync sync); sync FenceSync(enum condition, bitfield flags); condition: SYNC_GPU_COMMANDS_COMPLETE flags: must be 0 Waiting for Sync Objects [4.1.1] enum ClientWaitSync(sync sync, bitfield flags, uint64 timeout_ns); flags: SYNC_FLUSH_COMMANDS_BIT, or zero void WaitSync(sync sync, bitfield flags, uint64 timeout); timeout: TIMEOUT_IGNORED Sync Object Queries [4.1.3] void GetSynciv(sync sync, enum pname, sizei bufSize, sizei *length, int *values); pname: OBJECT_TYPE, SYNC_{STATUS, CONDITION, FLAGS} boolean IsSync(sync sync); Timer Queries [4.3] Timer queries use query objects to track the amount of time needed to fully complete a set of GL commands. void QueryCounter(uint id, TIMESTAMP); void GetInteger64v(TIMESTAMP, int64 *data); Asynchronous Queries [4.2, 4.2.1] void GenQueries(sizei n, uint *ids); void DeleteQueries(sizei n, const uint *ids); void BeginQuery(enum target, uint id); target: PRIMITIVES_GENERATED{n}, {ANY_}SAMPLES_PASSED{CONSERVATIVE}, TIME_ELAPSED, TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN{n} void BeginQueryIndexed(enum target, uint index, uint id); void EndQuery(enum target); void EndQueryIndexed(enum target, uint index); void GetQueryiv(enum target, enum pname, int *params); (parameters ) target: see BeginQuery, plus TIMESTAMP pname: CURRENT_QUERY, QUERY_COUNTER_BITS boolean IsQuery(uint id); void GetQueryIndexediv(enum target, uint index, enum pname, int *params); target: see BeginQuery pname: CURRENT_QUERY, QUERY_COUNTER_BITS void GetQueryObjectiv(uint id, enum pname, int *params); void GetQueryObjectuiv(uint id, enum pname, uint *params); void GetQueryObjecti64v(uint id, enum pname, int64 *params); void GetQueryObjectui64v(uint id, enum pname, uint64 *params); pname: QUERY_RESULT{_AVAILABLE} ©2012 Khronos Group - Rev. 0812 Page 2 OpenGL 4.3 API Reference Card   Shaders and Programs (cont.) void GetActiveUniform(uint program, uint index, sizei bufSize, sizei *length, int *size, enum *type, char *name); *type returns: DOUBLE_{VECn, MATn, MATnxn}, DOUBLE, FLOAT_{VECn, MATn, MATnxn}, FLOAT, INT, INT_VECn, UNSIGNED_INT{_VECn}, BOOL, BOOL_VECn, or any value in [Table 7.3] void GetActiveUniformsiv(uint program, sizei uniformCount, const uint *uniformIndices, enum pname, int *params); pname: UNIFORM_{TYPE, SIZE, NAME_LENGTH}, UNIFORM_BLOCK_INDEX, UNIFORM_OFFSET, UNIFORM_{ARRAY, MATRIX}_STRIDE, UNIFORM_IS_ROW_MAJOR, UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX uint GetUniformBlockIndex(uint program, const char *uniformBlockName); void GetActiveUniformBlockName( uint program, uint uniformBlockIndex, sizei bufSize, sizei length, char *uniformBlockName); void GetActiveUniformBlockiv( uint program, uint uniformBlockIndex, enum pname, int *params); pname: UNIFORM_BLOCK_{BINDING, DATA_SIZE}, UNIFORM_BLOCK_NAME_LENGTH, UNIFORM_BLOCK_ACTIVE_UNIFORMS{_INDICES}, UNIFORM_BLOCK_REFERENCED_BY_x_SHADER, where x may be one of VERTEX, FRAGMENT, COMPUTE, GEOMETRY, TESS_CONTROL, or TESS_EVALUATION void GetActiveAtomicCounterBufferiv( uint program, uint bufferIndex, enum pname, int *params); pname: see GetActiveUniformBlockiv Load Uniform Vars. In Default Uniform Block void Uniform{1234}{i f d}(int location, T value); void Uniform{1234}{i f d}v(int location, sizei count, const T *value); void Uniform{1234}ui(int location, T value); void Uniform{1234}uiv(int location, sizei count, const T *value); void UniformMatrix{234}{f d}v( int location, sizei count, boolean transpose, const float *value); void UniformMatrix{2x3,3x2,2x4,4x2,3x4, 4x3}{fd}v(int location, sizei count, boolean transpose, const float *value); void ProgramUniform{1234}{i f d}( uint program, int location, T value); void ProgramUniform{1234}{i f d}v( uint program, int location, sizei count, const T *value); void ProgramUniform{1234}ui( uint program, int location, T value); void ProgramUniform{1234}uiv( uint program, int location, sizei count, const T *value); void ProgramUniformMatrix{234}{f d}v( uint program, int location, sizei count, boolean transpose, const float *value); void ProgramUniformMatrixf{2x3,3x2,2x4,4x2, 3x4, 4x3}{f d}v( uint program, int location, sizei count, boolean transpose, const float *value); Uniform Buffer Object Bindings void UniformBlockBinding(uint program, uint uniformBlockIndex, uint uniformBlockBinding); Shader Buffer Variables [7.7] void ShaderStorageBlockBinding( uint program, uint storageBlockIndex, uint storageBlockBinding); Subroutine Uniform Variables [7.8] Parameter shadertype for the functions in this section may be one of TESS_{CONTROL, EVALUATION}_SHADER, {COMPUTE, VERTEX, FRAGMENT, GEOMETRY}_SHADER int GetSubroutineUniformLocation( uint program, enum shadertype, const char *name); uint GetSubroutineIndex(uint program, enum shadertype, const char *name); void GetActiveSubroutineName( uint program, enum shadertype, uint index, sizei bufsize, sizei *length, char *name); void GetActiveSubroutineUniformName( uint program, enum shadertype, uint index, sizei bufsize, sizei *length, char *name); void GetActiveSubroutineUniformiv( uint program, enum shadertype, uint index, enum pname, int *values); pname: {NUM_}COMPATIBLE_SUBROUTINES void UniformSubroutinesuiv(enum shadertype, sizei count, const uint *indices); Shader Memory Access [7.11.2] See diagram on page 11 for more information. void MemoryBarrier(bitfield barriers); barriers: ALL_BARRIER_BITS or the OR of: {VERTEX_ATTRIB_ARRAY, ELEMENT_ARRAY, UNIFORM, TEXTURE_FETCH, BUFFER_UPDATE, SHADER_IMAGE_ACCESS, COMMAND, PIXEL_BUFFER, TEXTURE_UPDATE, FRAMEBUFFER, TRANSFORM_FEEDBACK, ATOMIC_COUNTER, SHADER_STORAGE}_BARRIER_BIT Shader|Program Queries [7.12] void GetShaderiv(uint shader, enum pname, int *params); pname: SHADER_TYPE, FRAGMENT_SHADER, {GEOMETRY, VERTEX}_SHADER, TESS_{CONTROL, EVALUATION}_SHADER, INFO_LOG_LENGTH, {DELETE, COMPILE}_STATUS, COMPUTE_SHADER, SHADER_SOURCE_LENGTH void GetProgramiv(uint program, enum pname, int *params); pname: {DELETE, LINK, VALIDATE}_STATUS, INFO_LOG_LENGTH, ATTACHED_SHADERS, ACTIVE_{UNIFORMS, ATTRIBUTES}, ACTIVE_ATTRIBUTE_MAX_LENGTH, ACTIVE_UNIFORM_{BLOCKS, MAX_LENGTH}, ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH, ACTIVE_ATOMIC_COUNTER_BUFFERS, TRANSFORM_FEEDBACK_{BUFFER_MODE, VARYINGS}, TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, GEOMETRY_{INPUT, OUTPUT}_TYPE, COMPUTE_WORK_GROUP_SIZE, GEOMETRY_{SHADER_INVOCATIONS, VERTICES_OUT} Texturing [8] void ActiveTexture(enum texture); texture: TEXTUREi (where i is [0, max(MAX_TEXTURE_COORDS, MAX_COMBINED_TEXTURE_IMAGE_UNITS)-1]) Texture Objects [8.1] void GenTextures(sizei n, uint *textures); void BindTexture(enum target, uint texture); target: TEXTURE_{1D, 2D}{_ARRAY}, TEXTURE_{3D, RECTANGLE, BUFFER}, TEXTURE_CUBE_MAP{_ARRAY}, TEXTURE_2D_MULTISAMPLE{_ARRAY} void DeleteTextures(sizei n, const uint *textures); boolean IsTexture(uint texture); Sampler Objects [8.2] void GenSamplers(sizei count, uint *samplers); void BindSampler(uint unit, uint sampler); void SamplerParameter{i f}(uint sampler, enum pname, T param); pname: TEXTURE_x where x may be WRAP_{S, T, R}, {MIN, MAG}_FILTER, {MIN, MAX}_LOD, BORDER_COLOR, LOD_BIAS, COMPARE_{MODE, FUNC} void SamplerParameter{i f}v(uint sampler, enum pname, const T *param); pname: see SamplerParameter{if} void SamplerParameterI{i ui}v(uint sampler, enum pname, const T *params); pname: see SamplerParameter{if} void DeleteSamplers(sizei count, const uint *samplers); boolean IsSampler(uint sampler); Sampler Queries [8.3] void GetSamplerParameter{i f}v( uint sampler, enum pname, T *params); pname: see SamplerParameter{if} void GetSamplerParameterI{i ui}v( uint sampler, enum pname, T *params); pname: see SamplerParameter{if} Texture Image Spec. [8.5] void TexImage1D(enum target, int level, int internalformat, sizei width, int border, enum format, enum type, const void *data); target: TEXTURE_1D, PROXY_TEXTURE_1D type, internalformat, format: see TexImage3D void TexImage2D(enum target, int level, int internalformat, sizei width, sizei height, int border, enum format, enum type, const void *data); target: PROXY_TEXTURE_CUBE_MAP, POSITIVE_{X, Y, Z}, NEGATIVE_{X, Y, Z} internalformat, format, type: see TexImage3D void TexImage3D(enum target, int level, int internalformat, sizei width, sizei height, sizei depth, int border, enum format, enum type, const void *data); target: TEXTURE_{3D, 2D_ARRAY, CUBE_MAP_ARRAY}, PROXY_TEXTURE_{3D, 2D_ARRAY, CUBE_MAP_ARRAY} internalformat: DEPTH_{COMPONENT, STENCIL}, RED, INTENSITY, RG, RGB, RGBA; or a sized internal format from [Tables 8.12 - 8.13], COMPRESSED_{RED_RGTC1}, COMPRESSED_ {RG_RGTC2}, COMPRESSED_SIGNED_{RED_RGTC1, RG_RGTC2}, or a specific compressed format in [Table 8.14] format: DEPTH_{COMPONENT, STENCIL}, RED, GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA, BGRA_INTEGER, {RED, GREEN, BLUE}_INTEGER, {RG, RGB}_INTEGER, {RGBA, BGR}_INTEGER [Table 8.3] type: {UNSIGNED_}{BYTE, SHORT, INT}, HALF_FLOAT, FLOAT, or a value from [Table 8.2] Alternate Texture Image Spec. [8.6] void CopyTexImage1D(enum target, int level, enum internalformat, int x, int y, sizei width, int border); target: TEXTURE_1D internalformat: see TexImage3D void CopyTexImage2D(enum target, int level, enum internalformat, int x, int y, sizei width, sizei height, int border); target: TEXTURE_{2D, RECTANGLE, 1D_ARRAY}, TEXTURE_CUBE_MAP_{POSITIVE, NEGATIVE}_{X, Y, Z} internalformat: see TexImage3D void TexSubImage1D(enum target, int level, int xoffset, sizei width, enum format, enum type, const void *data); target: TEXTURE_1D format, type: see TexImage1D void TexSubImage2D(enum target, int level, int xoffset, int yoffset, sizei width, sizei height, enum format, enum type, const void *data); target: see CopyTexImage2D format, type: see TexImage3D void TexSubImage3D(enum target, int level, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth, enum format, enum type, const void *data); target: TEXTURE_3D, TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY format, type: see TexImage3D void CopyTexSubImage1D(enum target, int level, int xoffset, int x, int y, sizei width); target: see TexSubImage1D void CopyTexSubImage2D(enum target, int level, int xoffset, int yoffset, int x, int y, sizei width, sizei height); target: see TexSubImage2D void CopyTexSubImage3D(enum target, int level, int xoffset, int yoffset, int zoffset, int x, int y, sizei width, sizei height); target: see TexSubImage3D Compressed Texture Images [8.7] void CompressedTexImage1D(enum target, int level, enum internalformat, sizei width, int border, sizei imageSize, const void *data); target: TEXTURE_1D, PROXY_TEXTURE_1D internalformat: values are implementation-dependent void CompressedTexImage2D(enum target, int level, enum internalformat, sizei width, sizei height, int border, sizei imageSize, const void *data); target: see TexImage2D, omitting compressed rectangular texture formats internalformat: see CompressedTexImage3D, plus COMPRESSED_x where x may be {RGB8, SRGB8}_ETC2, {RGB8, SRGB8}_PUNCHTHROUGH_ALPHA1_ETC2 void CompressedTexImage3D(enum target, int level, enum internalformat, sizei width, sizei height, sizei depth, int border, sizei imageSize, const void *data); target: see TexImage3D internalformat: COMPRESSED_x where x may be {SIGNED_}RED_RGTC1, {SIGNED_}RG_RGTC2, {RGBA, SRGB_ALPHA}_BPTC_UNORM, RGB_BPTC_{SIGNED, UNSIGNED}_FLOAT void CompressedTexSubImage1D( enum target, int level, int xoffset, sizei width, enum format, sizei imageSize, const void *data); target: see TexSubImage1D format: see TexImage1D void CompressedTexSubImage2D( enum target, int level, int xoffset, int yoffset, sizei width, sizei height, enum format, sizei imageSize, cont void *data); target: see TexSubImage2D format: see TexImage2D void CompressedTexSubImage3D( enum target, int level, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth, enum format, sizei imageSize, const void *data); target: see TexSubImage3D format: see internalformat for CompressedTexImage3D Multisample Textures [8.8] void TexImage2DMultisample(enum target, sizei samples, int internalformat, sizei width, sizei height, boolean fixedsamplelocations); target: {PROXY_}TEXTURE_2D_MULTISAMPLE internalformat: see TexImage3DMultisample void TexImage3DMultisample(enum target, sizei samples, int internalformat, sizei width, sizei height, sizei depth, boolean fixedsamplelocations); target: {PROXY_}TEXTURE_2D_MULTISAMPLE_ARRAY internalformat: RED, RG, RGB, RGBA, STENCIL_INDEX, DEPTH_{COMPONENT, STENCIL}, or sized internal formats corresponding to these base formats Buffer Textures [8.9] void TexBufferRange(enum target, enum internalFormat, uint buffer, intptr offset, sizeiptr size); void TexBuffer(enum target, enum internalformat, uint buffer); target: TEXTURE_BUFFER internalformat: R8{I,UI}, R16{F, I, UI}, R32{F, I, UI}, RG8{I, UI}, RG16{F, I, UI}, RG32{F, I, UI}, RGB32{F, I, UI}, RGBA8{I, UI}, RGBA16{F, I, UI}, RGBA32{F, I, UI} (Continued on next page >) ©2012 Khronos Group - Rev. 0812 OpenGL 4.3 API Reference Card Page 3  Framebuffer Objects Binding and Managing [9.2] void BindFramebuffer(enum target, uint framebuffer); target: {DRAW, READ_}FRAMEBUFFER void GenFramebuffers(sizei n, uint *ids); void DeleteFramebuffers(sizei n, const uint *framebuffers); boolean IsFramebuffer(uint framebuffer); Framebuffer Object Parameters [9.2.1] void FramebufferParameteri( enum target, enum pname, int param); target: {DRAW_, READ_}FRAMEBUFFER pname: FRAMEBUFFER_DEFAULT_x where x may be WIDTH, HEIGHT, FIXED_SAMPLE_LOCATIONS, SAMPLES, LAYERS Framebuffer Object Queries [9.2.3] void GetFramebufferParameteriv( enum target, enum pname, int *params); target: {DRAW_, READ_}FRAMEBUFFER pname: see FramebufferParameteri void GetFramebufferAttachmentParameteriv( enum target, enum attachment, enum pname, int *params); target: {DRAW_, READ_}FRAMEBUFFER attachment: DEPTH, FRONT_{LEFT, RIGHT}, STENCIL, BACK_{LEFT, RIGHT}, COLOR_ATTACHMENTi, {DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT pname: FRAMEBUFFER_ATTACHMENT_x where x may be OBJECT_{TYPE, NAME}, COMPONENT_TYPE, {RED, GREEN, BLUE, ALPHA, DEPTH, STENCIL}_SIZE, COLOR_ENCODING, TEXTURE_LEVEL, LAYERED, TEXTURE_CUBE_MAP_FACE, TEXTURE_LAYER Attaching Images [9.2.4] void BindRenderbuffer(enum target, uint renderbuffer); target: RENDERBUFFER void GenRenderbuffers(sizei n, uint *renderbuffers); void DeleteRenderbuffers(sizei n, const uint *renderbuffers); boolean IsRenderbuffer(uint renderbuffer); void RenderbufferStorageMultisample( enum target, sizei samples, enum internalformat, sizei width, sizei height); target: RENDERBUFFER internalformat: see TexImage3DMultisample void RenderbufferStorage(enum target, enum internalformat, sizei width, sizei height); target: RENDERBUFFER internalformat: see TexImage3DMultisample Renderbuffer Object Queries [9.2.6] void GetRenderbufferParameteriv( enum target, enum pname, int *params); target: RENDERBUFFER pname: RENDERBUFFER_x where x may be (WIDTH, HEIGHT, INTERNAL_FORMAT, SAMPLES, {RED, GREEN, BLUE, ALPHA, DEPTH, STENCIL}_SIZE) TESS_CONTROL_OUTPUT_VERTICES, TESS_GEN_{MODE, SPACING, VERTEX_ORDER}, TESS_GEN_POINT_MODE, PROGRAM_SEPARABLE, PROGRAM_BINARY_{LENGTH, RETRIEVABLE}_HINT boolean IsProgramPipeline(uint pipeline); void GetProgramPipelineiv(uint pipeline, enum pname, int *params); pname: ACTIVE_PROGRAM, VALIDATE_STATUS, {VERTEX, FRAGMENT, GEOMETRY}_SHADER, TESS_{CONTROL, EVALUATION}_SHADER, INFO_LOG_LENGTH, COMPUTE_SHADER void GetAttachedShaders(uint program, sizei maxCount, sizei *count, uint *shaders); void GetShaderInfoLog(uint shader, sizei bufSize, sizei *length, char *infoLog); void GetProgramInfoLog(uint program, sizei bufSize, sizei *length, char *infoLog); void GetProgramPipelineInfoLog( uint pipeline, sizei bufSize, sizei *length, char *infoLog); void GetShaderSource(uint shader, sizei bufSize, sizei *length, char *source); void GetShaderPrecisionFormat( enum shadertype, enum precisiontype, int *range, int *precision); shadertype: {VERTEX, FRAGMENT}_SHADER precisiontype: {LOW, MEDIUM, HGH}_{FLOAT, INT} void GetUniform{f d i ui}v(uint program, int location, T *params); void GetUniformSubroutineuiv( enum shadertype, int location, uint *params); void GetProgramStageiv(uint program, enum shadertype, enum pname, int *values); pname: ACTIVE_SUBROUTINES_x where x may be UNIFORMS, MAX_LENGTH, UNIFORM_LOCATIONS, UNIFORM_MAX_LENGTH Attaching Renderbuffer Images [9.2.7] void FramebufferRenderbuffer(enum target, enum attachment, enum renderbuffertarget, uint renderbuffer); target: {DRAW, READ_}FRAMEBUFFER attachment: {DEPTH, STENCIL}_ATTACHMENT, DEPTH_STENCIL_ATTACHMENT, COLOR_ATTACHMENTi (where i is [0, MAX_COLOR_ATTACHMENTS - 1]) renderbuffertarget: RENDERBUFFER Attaching Texture Images [9.2.8] void FramebufferTexture(enum target, enum attachment, uint texture, int level); target: {DRAW, READ_}FRAMEBUFFER attachment: see FramebufferRenderbuffer void FramebufferTexture1D(enum target, enum attachment, enum textarget, uint texture, int level); textarget: TEXTURE_1D target, attachment: see FramebufferRenderbuffer void FramebufferTexture2D(enum target, enum attachment, enum textarget, uint texture, int level); textarget: TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z}, TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}, TEXTURE_{2D, RECTANGLE, 2D_MULTISAMPLE} target, attachment: see FramebufferRenderbuffer void FramebufferTexture3D(enum target, enum attachment, enum textarget, uint texture, int level, int layer); textarget: TEXTURE_3D target, attachment: see FramebufferRenderbuffer void FramebufferTextureLayer(enum target, enum attachment, uint texture, int level, int layer); target, attachment: see FramebufferRenderbuffer Framebuffer Completeness [9.4.2] enum CheckFramebufferStatus(enum target); target: {DRAW_, READ_}FRAMEBUFFER returns: FRAMEBUFFER_COMPLETE or a constant indicating the violating value Texturing (cont.) Texture Parameters [8.10] void TexParameter{i f}(enum target, enum pname, T param); target: see BindTexture void TexParameter{i f}v(enum target, enum pname, const T *params); target: see BindTexture, plus TEXTURE_{BORDER_COLOR, SWIZZLE_RGBA} void TexParameterI{i ui}v(enum target, enum pname, const T *params); target: see BindTexture, plus TEXTURE_{BORDER_COLOR, SWIZZLE_RGBA} pname: DEPTH_STENCIL_TEXTURE_MODE or TEXTURE_x where x may be one of WRAP_{S, T, R}, BORDER_COLOR, {MIN, MAG}_FILTER, LOD_BIAS,{MIN, MAX}_LOD, {BASE, MAX}_LEVEL, SWIZZLE_{R, G, B, A, RGBA}, COMPARE_{MODE, FUNC} [Table 8.16] Enumerated Queries [8.11] void GetTexParameter{if}v(enum target, enum value, T data); target: see BindTexture value: see pname for TexParameter void GetTexParameterI{i ui}v(enum target, enum value, T data); target: TEXTURE_{1D, 2D, 3D, RECTANGLE}, TEXTURE_{1D, 2D}_ARRAY, TEXTURE_CUBE_MAP{_ARRAY} value: see pname for TexParameterI{i ui}v, plus IMAGE_FORMAT_COMPATIBILITY_TYPE, TEXTURE_IMMUTABLE_{FORMAT, LEVELS}, TEXTURE_VIEW_NUM_{LEVELS, LAYERS}, TEXTURE_VIEW_MIN_{LEVEL, LAYER}, [Table 8.16] void GetTexLevelParameter{i f}v(enum target, int lod, enum value, T data); target: {PROXY_}TEXTURE_{1D, 2D, 3D}, TEXTURE_BUFFER, PROXY_TEXTURE_CUBE_MAP, {PROXY_}TEXTURE_{1D, 2D,CUBE_MAP}_ARRAY, {PROXY_}TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_{POSITIVE, NEGATIVE}_{X, Y, Z}, {PROXY_}TEXTURE_2D_MULTISAMPLE{_ARRAY} value: TEXTURE_{WIDTH, HEIGHT, DEPTH}, TEXTURE_{SAMPLES, FIXED_SAMPLE_LOCATIONS}, TEXTURE_{INTERNAL_FORMAT, SHARED_SIZE}, TEXTURE_COMPRESSED{_IMAGE_SIZE}, TEXTURE_BUFFER_DATA_STORE_BINDING, TEXTURE_BUFFER_{OFFSET, SIZE}, TEXTURE_STENCIL_SIZE, TEXTURE_x_{SIZE, TYPE} (where x can be RED, GREEN, BLUE, ALPHA, DEPTH) void GetTexImage(enum tex, int lod, enum format, enum type, void *img); tex: TEXTURE_{1, 2}D{_ARRAY}, TEXTURE_{3D, RECTANGLE, CUBE_MAP_ARRAY}, TEXTURE_CUBE_MAP_{POSITIVE, NEGATIVE}_{X, Y, Z} format: see ClearBufferSubData, pg 1 this card type: {UNSIGNED_}BYTE, SHORT, INT, {HALF_}FLOAT, or value from [Table 8.2] void GetCompressedTexImage(enum target, int lod, void *img); target: see tex for GetTexImage Cube Map Texture Select [8.13.1] Enable/Disable(TEXTURE_CUBE_MAP_SEAMLESS); Manual Mipmap Generation [8.14.4] void GenerateMipmap(enum target); target: TEXTURE_{1D, 2D, 3D}, TEXTURE_{1D, 2D}_ARRAY, TEXTURE_CUBE_MAP{_ARRAY} Texture View [8.18] void TextureView(uint texture, enum target, uint origtexture, enum internalformat, uint minlevel, uint numlevels, uint minlayer, uint numlayers); target: TEXTURE_{1D, 2D,CUBE_MAP}{_ARRAY}, TEXTURE_3D, TEXTURE_{RECTANGLE, BUFFER}, TEXTURE_2D_MULTISAMPLE{_ARRAY} internalformat: RGBA{16, 32}{F, UI, I}, RGBA{8,16}{_SNORM}, RGBA8{UI, I}, RGB{16, 32}{F, UI, I}, RGB{8,16}{_SNORM}, RGB8{UI, I}, RGB9_E5, RGB10_{A2UI, A2}, RG{16, 32}{F, UI, I}, RG{8,16}{_SNORM}, RG8{UI, I}, R{16, 32}{F, UI, I}, R{8,16}{_SNORM}, R8{UI, I}, R11F_G11F_B10F, SRGB8{_ALPHA8}, COMPRESSED{_SIGNED}_RED_RGTC1, COMPRESSED{_SIGNED}_RG_RGTC2, COMPRESSED_RGBA_BPTC_UNORM, COMPRESSED_SRGB_ALPHA_BPTC_UNORM, COMPRESSED_RGB_BPTC_{UN}SIGNED_FLOAT Immutable-Format Tex. Images [8.19] void TexStorage1D(enum target, sizei levels, enum internalformat, sizei width); target: TEXTURE_1D, PROXY_TEXTURE_1D internalformat: any of the sized internal color, depth, and stencil formats in [Tables 8.18-20] void TexStorage2D(enum target, sizei levels, enum internalformat, sizei width, sizei height); target: {PROXY_}TEXTURE_{RECTANGLE, CUBE_MAP}, {PROXY_} TEXTURE_{1D_ARRAY, 2D} internalformat: see TexStorage1D void TexStorage3D(enum target, sizei levels, enum internalformat, sizei width, sizei height, sizei depth); target: TEXTURE_3D, PROXY_TEXTURE_3D, {PROXY_}TEXTURE_{CUBE_MAP, 2D}{_ARRAY} internalformat: see TexStorage1D void TexStorage2DMultisample( enum target, sizei samples, enum internalformat, sizei width, sizei height, boolean fixedsamplelocations); target: {PROXY_}TEXTURE_2D_MULTISAMPLE void TexStorage3DMultisample( enum target, sizei samples, enum internalformat, sizei width, sizei height, sizei depth, boolean fixedsamplelocations); target: {PROXY_}TEXTURE_2D_MULTISAMPLE_ARRAY Invalidating Texture Image Data [8.20] void InvalidateTexSubImage(uint texture, int level, int xoffset, int yoffset, int zoffset, sizei width, sizei height, sizei depth); void InvalidateTexImage(uint texture, int level); Texture Image Loads/Stores [8.25] void BindImageTexture(uint index, uint texture, int level, boolean layered, int layer, enum access, enum format); access: READ_ONLY, WRITE_ONLY, READ_WRITE format: RGBA{32,16}F, RG{32,16}F, R11F_G11F_B10F, R{32,16}F, RGBA{32,16,8}UI, RGB10_A2UI, RG{32,16,8}UI, R{32,16,8}UI, RGBA{32,16,8}I, RG{32,16,8}I, R{32,16,8}I, RGBA{16,8}, RGB10_A2, RG{16,8}, R{16,8}, RGBA{16,8}_SNORM, RG{16,8}_SNORM, R{16,8}_SNORM [Table 8.25] Vertex Specification [10.2.1] Specify generic attributes with components of type float (VertexAttrib*), int or uint (VertexAttribI*), or double (VertexAttribL*). void GetVertexAttrib{d f i}v(uint index, enum pname, T *params); pname: CURRENT_VERTEX_ATTRIB or VERTEX_ATTRIB_ARRAY_x where x is one of BUFFER_BINDING, DIVISOR, ENABLED, INTEGER, LONG, NORMALIZED, SIZE, STRIDE, or TYPE void GetVertexAttribI{i ui}v(uint index, enum pname, T *params); pname: see GetVertexAttrib{d f i}v void GetVertexAttribLdv(uint index, enum pname, double *params); pname: see GetVertexAttrib{d f i}v void GetVertexAttribPointerv(uint index, enum pname, void **pointer); pname: VERTEX_ATTRIB_ARRAY_POINTER void VertexAttrib{1234}{s f d}(uint index, T values); void VertexAttrib{123}{s f d}v(uint index, const T *values); void VertexAttrib4{b s i f d ub us ui}v( uint index, const T *values); void VertexAttrib4Nub(uint index, T values); void VertexAttrib4N{b si ub us ui}v( uint index, const T *values); void VertexAttribI{1234}{i ui}(uint index, T values); void VertexAttribI{1234}{i ui}v(uint index, const T *values); void VertexAttribI4{b s ub us}v(uint index, const T *values); void VertexAttribL{1234}d(uint index, T values); void VertexAttribL{1234}dv(uint index, const T *values); void VertexAttribP{1234}ui(uint index, enum type, boolean normalized, uint value); void VertexAttribP{1234}uiv(uint index, enum type, boolean normalized, const uint *value); type: {UNSIGNED_}INT_2_10_10_10_REV ©2012 Khronos Group - Rev. 0812 Page 4 OpenGL 4.3 API Reference Card  Transform Feedback [13.2] void GenTransformFeedbacks(sizei n, uint *ids); void DeleteTransformFeedbacks(sizei n, const uint *ids); boolean IsTransformFeedback(uint id); void BindTransformFeedback( enum target, uint id); target: TRANSFORM_FEEDBACK void BeginTransformFeedback( enum primitiveMode); primitiveMode: TRIANGLES, LINES, POINTS void EndTransformFeedback(void); void PauseTransformFeedback(void); void ResumeTransformFeedback(void); void DrawTransformFeedback( enum mode, uint id); mode: see Drawing Commands [10.5] above void DrawTransformFeedbackInstanced( enum mode, uint id, sizei instancecount); void DrawTransformFeedbackStream( enum mode, uint id, uint stream); void DrawTransformFeedbackStreamInstanced( enum mode, uint id, uint stream, sizei instancecount); Viewport and Clipping Clipping [13.5] Enable/Disable(CLIP_DISTANCEi); i: [0, MAX_CLIP_DISTANCES - 1] Controlling Viewport [13.6.1] void DepthRangeArrayv(uint first, sizei count, const double *v); void DepthRangeIndexed(uint index, double n, double f); void DepthRange(double n, double f); void DepthRangef(float n, float f); void ViewportArrayv(uint first, sizei count, const float *v); void ViewportIndexedf(uint index, float x, float y, float w, float h); void ViewportIndexedfv(uint index, const float *v); void Viewport(int x, int y, sizei w, sizei h); Conditional Rendering [10.8] void BeginConditionalRender(uint id, enum mode); mode: {QUERY_BY_REGION, QUERY}_{WAIT, NO_WAIT} void EndConditionalRender(void); Rasterization [13.4, 14] Enable/Disable(target); target: RASTERIZER_DISCARD Flatshading [13.4] void ProvokingVertex(enum provokeMode); provokeMode: {FIRST, LAST}_VERTEX_CONVENTION Multisampling [14.3.1] Use to antialias points, and lines. Enable/Disable(target); target: MULTISAMPLE, SAMPLE_SHADING void GetMultisamplefv(enum pname, uint index, float *val); pname: SAMPLE_POSITION void MinSampleShading(float value); Points [14.4] void PointSize(float size); void PointParameter{i f}(enum pname, T param); pname, param: see PointParameter{if}v void PointParameter{i f}v(enum pname, const T *params); pname: POINT_FADE_THRESHOLD_SIZE, POINT_SPRITE_COORD_ORIGIN param, params: The fade threshold if pname is POINT_FADE_THRESHOLD_SIZE; {LOWER, UPPER}_LEFT if pname is POINT_SPRITE_COORD_ORIGIN. LOWER_LEFT, UPPER_LEFT, pointer to point fade threshold. Enable/Disable(target); target: PROGRAM_POINT_SIZE Line Segments [14.5] Enable/Disable(target); target: LINE_SMOOTH void LineWidth(float width); Polygons [14.6, 14.6.1] Enable/Disable(target); target: POLYGON_SMOOTH, CULL_FACE void FrontFace(enum dir); dir: CCW, CW void CullFace(enum mode); mode: FRONT, BACK, FRONT_AND_BACK Polygon Rast. & Depth Offset [14.6.4-5] void PolygonMode(enum face, enum mode); face: FRONT_AND_BACK mode: POINT, LINE, FILL void PolygonOffset(float factor, float units); Enable/Disable(target); target: POLYGON_OFFSET_{POINT, LINE, FILL} Pixel Storage Modes [8.4.1] void PixelStore{i f}(enum pname, T param); pname: {UN}PACK_x where x may be SWAP_BYTES, LSB_FIRST, ROW_LENGTH, SKIP_{PIXELS, ROWS}, ALIGNMENT, IMAGE_HEIGHT, SKIP_IMAGES, COMPRESSED_BLOCK_{WIDTH, HEIGHT, DEPTH, SIZE} Vertex Attributes [11.1.1] Vertex shaders operate on array of 4-component items numbered from slot 0 to MAX_VERTEX_ATTRIBS - 1. void GetActiveAttrib(uint program, uint index, sizei bufSize, sizei *length, int *size, enum *type, char *name); *type returns: FLOAT_{VECn, MATn, MATnxm}, FLOAT, {UNSIGNED_}INT, {UNSIGNED_}INT_VECn int GetAttribLocation(uint program, const char *name); void BindAttribLocation(uint program, uint index, const char *name); Varying Variables [11.1.2] void TransformFeedbackVaryings(uint program, sizei count, const char * const *varyings, enum bufferMode); bufferMode: {INTERLEAVED, SEPARATE}_ATTRIBS void GetTransformFeedbackVarying( uint program, uint index, sizei bufSize, sizei *length, sizei *size, enum *type, char *name); (parameters ) *type returns NONE, FLOAT{_VECn}, DOUBLE{_VECn}, {UNSIGNED_}INT, {UNSIGNED_}INT_VECn, MATnxm, {FLOAT, DOUBLE}_{MATn, MATnxm} Shader Execution [11.1.3] void ValidateProgram(uint program); void ValidateProgramPipeline(uint pipeline); Tessellation Control Shaders [11.2.2] void PatchParameterfv(enum pname, const float *values); pname: PATCH_DEFAULT_{INNER, OUTER}_LEVEL Fragment Shaders [15.0.2] int GetFragDataLocation(uint program, const char *name); int GetFragDataIndex(uint program, const char *name); void BindFragDataLocation(uint program, uint colorNumber, const char *name); void BindFragDataLocationIndexed( uint program, uint colorNumber, uint index, const char *name); Per-Fragment Operations Scissor Test [17.3.2] Enable/Disable(SCISSOR_TEST); IsEnabled(SCISSOR_TEST); IsEnabledi(SCISSOR_TEST, uint index); void ScissorArrayv(uint first, sizei count, const int *v); void ScissorIndexed(uint index, int left, int bottom, sizei width, sizei height); void ScissorIndexedv(uint index, int *v); void Scissor(int left, int bottom, sizei width, sizei height); Multisample Fragment Operations[17.3.3] Enable/Disable(target); target: SAMPLE_ALPHA_TO_{COVERAGE, ONE}, SAMPLE_COVERAGE void SampleCoverage(float value, boolean invert); void SampleMaski(uint maskNumber, bitfield mask); (Continued on next page >) Vertex Arrays Arrays for Generic Vertex Attributes [10.3.1] void VertexAttribFormat(uint attribindex, int size, enum type, boolean normalized, unit relativeoffset); type: {UNSIGNED_}BYTE, {UNSIGNED_}SHORT, {UNSIGNED_}INT, {HALF_}FLOAT, DOUBLE, FIXED, {UNSIGNED_}INT_2_10_10_10_REV void VertexAttribIFormat(uint attribindex, int size, enum type, unit relativeoffset); type: {UNSIGNED_}BYTE, {UNSIGNED_}SHORT, {UNSIGNED_}INT void VertexAttribLFormat(uint attribindex, int size, enum type, unit relativeoffset); type: DOUBLE void BindVertexBuffer(uint bindingindex, uint buffer, intptr offset, sizei stride); void VertexAttribBinding(uint attribindex, uint bindingindex); void VertexAttribPointer(uint index, int size, enum type, boolean normalized, sizei stride, const void *pointer); type: see VertexAttribFormat void VertexAttribIPointer(uint index, int size, enum type, sizei stride, const void *pointer); type: see VertexAttribIFormat index: [0, MAX_VERTEX_ATTRIBS - 1] void VertexAttribLPointer(uint index, int size, enum type, sizei stride, const void *pointer); type: DOUBLE index: [0, MAX_VERTEX_ATTRIBS - 1] void EnableVertexAttribArray(uint index); void DisableVertexAttribArray(uint index); index: [0, MAX_VERTEX_ATTRIBS - 1] void VertexBindingDivisor(uint bindingindex, uint divisor); void VertexAttribDivisor(uint index, uint divisor); Enable/Disable(target); target: PRIMITIVE_RESTART{_FIXED_INDEX} void PrimitiveRestartIndex(uint index); Vertex Array Objects [10.4] All states related to definition of data used by vertex processor is in a vertex array object. void GenVertexArrays(sizei n, uint *arrays); void DeleteVertexArrays(sizei n, const uint *arrays); void BindVertexArray(uint array); boolean IsVertexArray(uint array); Drawing Commands [10.5] For all the functions in this section: mode: POINTS, LINE_STRIP, LINE_LOOP, LINES, TRIANGLE_{STRIP, FAN}, TRIANGLES, PATCHES, LINES_ADJACENCY, TRIANGLES_ADJACENCY, {LINE, TRIANGLE}_STRIP_ADJACENCY, type: UNSIGNED_{BYTE, SHORT, INT} void DrawArrays(enum mode, int first, sizei count); void DrawArraysInstancedBaseInstance( enum mode, int first, sizei count, sizei instancecount, uint baseinstance); void DrawArraysInstanced(enum mode, int first, sizei count, sizei instancecount); void DrawArraysIndirect(enum mode, const void *indirect); void MultiDrawArrays(enum mode, const int *first, const sizei *count, sizei drawcount); void MultiDrawArraysIndirect(enum mode, const void *indirect, sizei drawcount, sizei stride); void DrawElements(enum mode, sizei count, enum type, const void *indices); void DrawElementsInstancedBaseInstance( enum mode, sizei count, enum type, const void *indices, sizei instancecount, uint baseinstance); void MultiDrawElements(enum mode, const sizei *count, enum type, const void * const *indices, sizei drawcount); void DrawRangeElements(enum mode, uint start, uint end, sizei count, enum type, const void *indices); void DrawElementsBaseVertex(enum mode, sizei count, enum type, const void *indices, int basevertex); void DrawRangeElementsBaseVertex( enum mode, uint start, uint end, sizei count, enum type, const void *indices, int basevertex); void DrawElementsInstancedBaseVertex( enum mode, sizei count, enum type, const void *indices, sizei instancecount, int basevertex); void DrawElementsInstancedBase- VertexBaseInstance(enum mode, sizei count, enum type, const void *indices, sizei instancecount, int basevertex, uint baseinstance); void DrawElementsIndirect(enum mode, enum type, const void *indirect); void MultiDrawElementsIndirect( enum mode, enum type, const void *indirect, sizei drawcount, sizei stride); void MultiDrawElementsBaseVertex( enum mode, const sizei *count, enum type, const void *const *indices, sizei drawcount, int *basevertex); void DrawElementsInstanced(enum mode, sizei count, enum type, const void *indices, sizei instancecount); ©2012 Khronos Group - Rev. 0812 OpenGL 4.3 API Reference Card Page 5  Whole Framebuffer Selecting a Buffer for Writing [17.4.1] void DrawBuffer(enum buf); buf: NONE, {FRONT, BACK}_{LEFT, RIGHT}, FRONT, BACK, LEFT, RIGHT, FRONT_AND_BACK, COLOR_ATTACHMENTi (i = [0, MAX_COLOR_ATTACHMENTS - 1 ]) void DrawBuffers(sizei n, const enum *bufs); bufs: NONE, {FRONT, BACK}_{LEFT, RIGHT}, COLOR_ATTACHMENTi (i = [0, MAX_COLOR_ATTACHMENTS - 1 ]) Fine Control of Buffer Updates [17.4.2] void ColorMask(boolean r, boolean g, boolean b, boolean a); void ColorMaski(uint buf, boolean r, boolean g, boolean b, boolean a); void DepthMask(boolean mask); void StencilMask(uint mask); void StencilMaskSeparate(enum face, uint mask); face: FRONT, BACK, FRONT_AND_BACK Clearing the Buffers [17.4.3] void Clear(bitfield buf); buf: 0 or the OR of {COLOR, DEPTH, STENCIL}_BUFFER_BIT void ClearColor(float r, float g, float b, float a); void ClearDepth(double d); void ClearDepthf(float d); void ClearStencil(int s); void ClearBuffer{i f ui}v(enum buffer, int drawbuffer, const T *value); buffer: COLOR, DEPTH, STENCIL void ClearBufferfi(enum buffer, int drawbuffer, float depth, int stencil); buffer: DEPTH_STENCIL drawbuffer: 0 Invalidating Framebuffers [17.4.4] void InvalidateSubFramebuffer( enum target, sizei numAttachments, const enum *attachments, int x, int y, sizei width, sizei height); target: {DRAW_ , READ_}FRAMEBUFFER attachments: COLOR_ATTACHMENTi, DEPTH, {DEPTH, STENCIL}_ATTACHMENT, COLOR, {FRONT, BACK}_{LEFT, RIGHT}, AUXi, ACCUM, STENCIL void InvalidateFramebuffer( enum target, sizei numAttachments, const enum *attachments); target, attachment: see InvalidateSubFramebuffer Reading and Copying Pixels Color Clamping [18.2.6] void ClampColor(enum target, enum clamp); target: CLAMP_READ_COLOR clamp: TRUE, FALSE, FIXED_ONLY Reading Pixels [18.2] void ReadPixels(int x, int y, sizei width, sizei height, enum format, enum type, void *data); format: STENCIL_INDEX, RED, GREEN, BLUE, RG, RGB, RGBA, BGR, DEPTH_{COMPONENT, STENCIL}, {RED, GREEN, BLUE, RG, RGB}_INTEGER, {RGBA, BGR, BGRA}_INTEGER, BGRA [Table 8.3] type: {HALF_}FLOAT, {UNSIGNED_}BYTE, {UNSIGNED_}SHORT, {UNSIGNED_}INT, FLOAT_32_UNSIGNED_INT_24_8_REV, UNSIGNED_{BYTE, SHORT, INT}_* values from [Table 8.2] void ReadBuffer(enum src); src: NONE, {FRONT, BACK}_{LEFT, RIGHT}, FRONT, BACK, LEFT, RIGHT, FRONT_AND_BACK, COLOR_ATTACHMENTi (i = [0, MAX_COLOR_ATTACHMENTS - 1 ]) Copying Pixels [18.3] void BlitFramebuffer(int srcX0, int srcY0, int srcX1, int srcY1, int dstX0, int dstY0, int dstX1, int dstY1, bitfield mask, enum filter); mask: Bitwise OR of {COLOR, DEPTH, STENCIL}_BUFFER_BIT filter: LINEAR, NEAREST void CopyImageSubData(uint srcName, enum srcTarget, int srcLevel, int srcX, int srcY, int srcZ, uint dstName, enum dstTarget, int dstLevel, int dstX, int dstY, int dstZ, sizei srcWidth, sizei srcHeight, sizei srcDepth); srcTarget, dstTarget: see target for BindTexture in section [8.1] on this card, plus GL_RENDERTARGET State and State Requests A complete list of symbolic constants for states is shown in the tables in [6.2]. Simple Queries [22.1] void GetBooleanv(enum pname, boolean *data); void GetIntegerv(enum pname, int *data); void GetInteger64v(enum pname, int64 *data); void GetFloatv(enum pname, float *data); void GetDoublev(enum pname, double *data); void GetDoublei_v(enum target, uint index, double *data); void GetBooleani_v(enum target, uint index, boolean *data); void GetIntegeri_v(enum target, uint index, int *data); void GetFloati_v(enum target, uint index, float *data); void GetInteger64i_v(enum target, uint index, int64 *data); boolean IsEnabled(enum cap); boolean IsEnabledi(enum target, uint index); Pointer and String Queries [22.2] ubyte *GetString(enum name); name: RENDERER, VENDOR, VERSION, SHADING_LANGUAGE_VERSION ubyte *GetStringi(enum name, uint index); name: EXTENSIONS, SHADING_LANGUAGE_VERSION index: range is [0, NUM_EXTENSIONS - 1] void GetPointerv(enum pname, void **params); Get Internal Format [22.3] void GetInternalformati64v(enum target, enum internalformat, enum pname, sizei bufSize, int64 *params); target: TEXTURE_{1D,2D,3D}, TEXTURE_{1D,2D,CUBE_MAP}_ARRAY, TEXTURE_2D_MULTISAMPLE{_ARRAY}, TEXTURE_{BUFFER, RECTANGLE}, RENDERBUFFER pname: NUM_SAMPLE_COUNTS, SAMPLES, INTERNALFORMAT_{SUPPORTED, PREFERRED}, INTERNALFORMAT_{RED, GREEN, BLUE}_SIZE, INTERNALFORMAT_{DEPTH, STENCIL}_SIZE, INTERNALFORMAT_{ALPHA, SHARED}_SIZE, INTERNALFORMAT_{RED, GREEN}_TYPE, INTERNALFORMAT_{BLUE, ALPHA}_TYPE, INTERNALFORMAT_{DEPTH, STENCIL}_TYPE, MAX_{WIDTH, HEIGHT, DEPTH, LAYERS}, MAX_COMBINED_DIMENSIONS, FRAMEBUFFER_BLEND, (more parameters ) {COLOR, DEPTH, STENCIL}_COMPONENTS, {COLOR, DEPTH, STENCIL}_RENDERABLE, FRAMEBUFFER_RENDERABLE{_LAYERED}, READ_PIXELS{_FORMAT, _TYPE}, FILTER, {GET_}TEXTURE_IMAGE_{FORMAT, TYPE}, {AUTO_GENERATE, GENERATE_}MIPMAP, COLOR_ENCODING, TEXTURE_SHADOW, SRGB_{READ, WRITE, DECODE}, TESS_{CONTROL, EVALUATION}_TEXTURE, {GEOMETRY, FRAGMENT}_TEXTURE, {COMPUTE, VERTEX}_TEXTURE, CLEAR_BUFFER, TEXTURE_GATHER{_SHADOW}, IMAGE_TEXEL_SIZE, SHADER_IMAGE_{LOAD, STORE, ATOMIC}, {IMAGE, VIEW}_COMPATIBILITY_CLASS, IMAGE_PIXEL_{FORMAT, TYPE}, IMAGE_FORMAT_COMPATIBILITY_TYPE, SIMULTANEOUS_TEXTURE_AND_DEPTH_TEST, SIMULTANEOUS_TEXTURE_AND_DEPTH_WRITE, SIMULTANEOUS_TEXTURE_AND_STENCIL_TEST, SIMULTANEOUS_TEXTURE_AND_STENCIL_WRITE, TEXTURE_{COMPRESSED, VIEW}, TEXTURE_COMPRESSED_BLOCK_{WIDTH, HEIGHT}, TEXTURE_COMPRESSED_BLOCK_SIZE void GetInternalformativ(enum target, enum internalformat, enum pname, sizei bufSize, int *params); internalformat: any valid internalformat target: see GetInternalformati64v, plus TEXTURE_ CUBE_MAP pname:see GetInternalformati64v, plus INTERNALFORMAT_ALPHA_TYPE Hints [21.5] void Hint(enum target, enum hint); target: FRAGMENT_SHADER_DERIVATIVE_HINT, TEXTURE_COMPRESSION_HINT, {LINE, POLYGON}_SMOOTH_HINT hint: FASTEST, NICEST, DONT_CARE Compute Shaders [19] void DispatchCompute( uint num_group_x, uint num_groups_y, uint num_groups_z); void DispatchComputeIndirect(intptr indirect); Debug Output [20] Enable/Disable(DEBUG_OUTPUT); void ObjectPtrLabel(void* ptr, sizei length, const char *label); void GetObjectPtrLabel(void* ptr, sizei bufSize, sizei *length, char *label); Debug Message Callback [20.2] void DebugMessageCallback( DEBUGPROC callback, void *userParam); DEBUGPROC callback function type: void callback(enum source, enum type, uint id, enum severity, sizei length, const char *message, void *userParam); (parameters ) source: DEBUG_SOURCE_x where x may be API, SHADER_COMPILER, WINDOW_SYSTEM, THIRD_PARTY, APPLICATION, OTHER type: DEBUG_TYPE_x where x may be ERROR, MARKER, OTHER, DEPRECATED_BEHAVIOR, UNDEFINED_BEHAVIOR, PERFORMANCE, PORTABILITY, {PUSH, POP}_GROUP severity: DEBUG_SEVERITY_{HIGH, MEDIUM}, DEBUG_SEVERITY_{LOW, NOTIFICATION} Controlling Debug Messages [20.4] void DebugMessageControl(enum source, enum type, enum severity, sizei count, const uint *ids, boolean enabled); Externally Generated Messages [20.5] void DebugMessageInsert(enum source, enum type, uint id, enum severity, int length, const char *buf); Debug Groups [20.6] void PushDebugGroup(enum source, uint id, sizei length, const char *message); void PopDebugGroup(void); Debug Labels [20.7] void ObjectLabel(enum identifier, uint name, sizei length, const char *label); identifier: BUFFER, FRAMEBUFFER, RENDERBUFFER, PROGRAM_PIPELINE, PROGRAM, QUERY, SAMPLER, SHADER, TEXTURE, TRANSFORM_FEEDBACK, VERTEX_ARRAY Synchronous Debug Output [20.8] Enable/Disable( DEBUG_OUTPUT_SYNCHRONOUS); Debug Output Queries [20.9] uint GetDebugMessageLog(uint count, sizei logSize, enum *sources, enum *types, enum *ids, enum *severities, sizei *lengths, char *messageLog); void GetObjectLabel(enum identifier, uint name, sizei bufSize, sizei *length, char *label); Per-Fragment (cont.) Stencil Test [17.3.5] Enable/Disable(STENCIL_TEST); void StencilFunc(enum func, int ref, uint mask); void StencilFuncSeparate(enum face, enum func, int ref, uint mask); func: NEVER, ALWAYS, LESS, GREATER, EQUAL, LEQUAL, GEQUAL, NOTEQUAL void StencilOp(enum sfail, enum dpfail, enum dppass); void StencilOpSeparate(enum face, enum sfail, enum dpfail, enum dppass); face: FRONT, BACK, FRONT_AND_BACK sfail, dpfail, dppass: KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, DECR_WRAP Depth Buffer Test [17.3.6] Enable/Disable(DEPTH_TEST); void DepthFunc(enum func); func: see StencilFuncSeparate Occlusion Queries [17.3.7] BeginQuery(enum target, uint id); EndQuery(enum target); target: SAMPLES_PASSED, ANY_SAMPLES_PASSED, ANY_SAMPLES_PASSED_CONSERVATIVE Blending [17.3.8] Enable/Disable(BLEND); Enablei/Disablei(BLEND, uint index); void BlendEquation(enum mode); void BlendEquationSeparate(enum modeRGB, enum modeAlpha); mode, modeRGB, modeAlpha: MIN, MAX , FUNC_{ADD, SUBTRACT, REVERSE_SUBTRACT} void BlendEquationi(uint buf, enum mode); void BlendEquationSeparatei(uint buf, enum modeRGB, enum modeAlpha); mode, modeRGB, modeAlpha: see BlendEquationSeparate void BlendFunc(enum src, enum dst); srd, dst: see BlendFuncSeparate void BlendFuncSeparate(enum srcRGB, enum dstRGB, enum srcAlpha, enum dstAlpha); src, dst, srcRGB, dstRGB, srcAlpha, dstAlpha: ZERO, ONE, SRC_ALPHA_SATURATE, {SRC, SRC1, DST, CONSTANT}_{COLOR, ALPHA}, ONE_MINUS_{SRC, SRC1}_{COLOR, ALPHA}, ONE_MINUS_{DST, CONSTANT}_{COLOR, ALPHA} void BlendFunci(uint buf, enum src, enum dst); src, dst: see BlendFuncSeparate void BlendFuncSeparatei(uint buf, enum srcRGB, enum dstRGB, enum srcAlpha, enum dstAlpha); dstRGB, dstAlpha, srcRGB, srcAlpha: see BlendFuncSeparate void BlendColor(clampf red, clampf green, clampf blue, clampf alpha); Dithering [17.3.10] Enable/Disable(DITHER); Logical Operation [17.3.11] Enable/Disable(enum COLOR_LOGIC_OP); void LogicOp(enum op); op: CLEAR, AND, AND_REVERSE, COPY, AND_INVERTED, NOOP, XOR, OR, NOR, EQUIV, INVERT, OR_REVERSE, COPY_INVERTED, OR_INVERTED, NAND, SET ©2012 Khronos Group - Rev. 0812 Page 6 OpenGL Shading Language 4.30 Reference Card  Types [4.1] Transparent Types void no function return value bool Boolean int, uint signed/unsigned integers float single-precision floating-point scalar double double-precision floating scalar vec2, vec3, vec4 floating point vector dvec2, dvec3, dvec4 double precision floating-point vectors bvec2, bvec3, bvec4 Boolean vectors ivec2, ivec3, ivec4 uvec2, uvec3, uvec4 signed and unsigned integer vectors mat2, mat3, mat4 2x2, 3x3, 4x4 float matrix mat2x2, mat2x3, mat2x4 2-column float matrix of 2, 3, or 4 rows mat3x2, mat3x3, mat3x4 3-column float matrix of 2, 3, or 4 rows mat4x2, mat4x3, mat4x4 4-column float matrix of 2, 3, or 4 rows dmat2, dmat3, dmat4 2x2, 3x3, 4x4 double-precision float matrix dmat2x2, dmat2x3, dmat2x4 2-col. double-precision float matrix of 2, 3, 4 rows dmat3x2, dmat3x3, dmat3x4 3-col. double-precision float matrix of 2, 3, 4 rows dmat4x2, dmat4x3, dmat4x4 4-column double-precision float matrix of 2, 3, 4 rows Floating-Point Opaque Types sampler{1D,2D,3D} image{1D,2D,3D} 1D, 2D, or 3D texture samplerCube imageCube cube mapped texture sampler2DRect image2DRect rectangular texture sampler{1D,2D}Array image{1D,2D}Array 1D or 2D array texture samplerBuffer imageBuffer buffer texture sampler2DMS image2DMS 2D multi-sample texture sampler2DMSArray image2DMSArray 2D multi-sample array texture samplerCubeArray imageCubeArray cube map array texture sampler1DShadow sampler2DShadow 1D or 2D depth texture with comparison sampler2DRectShadow rectangular tex. / compare sampler1DArrayShadow sampler2DArrayShadow 1D or 2D array depth texture with comparison samplerCubeShadow cube map depth texture with comparison samplerCubeArrayShadow cube map array depth texture with comparison Signed Integer Opaque Types isampler[1,2,3]D integer 1D, 2D, or 3D texture iimage[1,2,3]D integer 1D, 2D, or 3D image isamplerCube integer cube mapped texture iimageCube integer cube mapped image isampler2DRect int. 2D rectangular texture Continue  Signed Integer Opaque Types (cont’d) iimage2DRect int. 2D rectangular image isampler[1,2]DArray integer 1D, 2D array texture iimage[1,2]DArray integer 1D, 2D array image isamplerBuffer integer buffer texture iimageBuffer integer buffer image isampler2DMS int. 2D multi-sample texture iimage2DMS int. 2D multi-sample image isampler2DMSArray int. 2D multi-sample array tex. iimage2DMSArray int. 2D multi-sample array image isamplerCubeArray int. cube map array texture iimageCubeArray int. cube map array image Unsigned Integer Opaque Types atomic_uint uint atomic counter usampler[1,2,3]D uint 1D, 2D, or 3D texture uimage[1,2,3]D uint 1D, 2D, or 3D image usamplerCube uint cube mapped texture uimageCube uint cube mapped image usampler2DRect uint rectangular texture uimage2DRect uint rectangular image usampler[1,2]DArray 1D or 2D array texture uimage[1,2]DArray 1D or 2D array image usamplerBuffer uint buffer texture uimageBuffer uint buffer image usampler2DMS uint 2D multi-sample texture uimage2DMS uint 2D multi-sample image usampler2DMSArray uint 2D multi-sample array tex. Continue  Unsigned Integer Opaque Types (cont’d) uimage2DMSArray uint 2D multi-sample array image usamplerCubeArray uint cube map array texture uimageCubeArray uint cube map array image Implicit Conversions int -> uint uvec2 -> dvec2 int, uint -> float uvec3 -> dvec3 int, uint, float -> double uvec4 -> dvec4 ivec2 -> uvec2 vec2 -> dvec2 ivec3 -> uvec3 vec3 -> dvec3 ivec4 -> uvec4 vec4 -> dvec4 ivec2 -> vec2 mat2 -> dmat2 ivec3 -> vec3 mat3 -> dmat3 ivec4 -> vec4 mat4 -> dmat4 uvec2 -> vec2 mat2x3 -> dmat2x3 uvec3 -> vec3 mat2x4 -> dmat2x4 uvec4 -> vec4 mat3x2 -> dmat3x2 ivec2 -> dvec2 mat3x4 -> dmat3x4 ivec3 -> dvec3 mat4x2 -> dmat4x2 ivec4 -> dvec4 mat4x3 -> dmat4x4 Aggregation of Basic Types Arrays float[3] foo; float foo[3]; int a [3][2]; // Structures, blocks, and structure members // can be arrays. Arrays of arrays supported. Structures struct type-name { members } struct-name[]; // optional variable declaration Blocks in/out/uniform block-name { // interface matching by block name optionally-qualified members } instance-name[]; // optional instance name, optionally an array Qualifiers Storage Qualifiers [4.3] Declarations may have one storage qualifier. none (default) local read/write memory, or input parameter const read-only variable in linkage into shader from previous stage out linkage out of a shader to next stage uniform linkage between a shader, OpenGL, and the application buffer accessible by shaders and OpenGL API shared compute shader only, shared among work items in a local work group Auxiliary Storage Qualifiers Use to qualify some input and output variables: centroid centroid-based interpolation sampler per-sample interpolation patch per-tessellation-patch attributes Interface Blocks [4.3.9] Input, output, uniform, and buffer variable declarations can be grouped. For example: uniform Transform { mat4 ModelViewMatrix; // allowed restatement qualifier uniform mat3 NormalMatrix; }; Layout Qualifiers [4.4] layout(layout-qualifiers) block-declaration layout(layout-qualifiers) in/out/uniform layout(layout-qualifiers) in/out/uniform declaration Input Layout Qualifiers [4.4.1] For all shader stages: location = integer-constant Tessellation Evaluation triangles, quads, equal_spacing, isolines, fractional_{even,odd}_spacing, cw, ccw, point_mode Geometry Shader points, lines, {lines,triangles}_adjacency, triangles, invocations = integer-constant Fragment Shader For redeclaring built-in variable gl_FragCoord: origin_upper_left, pixel_center_integer For in only (not with variable declarations): early_fragment_tests Compute Shader local_size_x = integer-constant, local_size_y = integer-constant, local_size_z = integer-constant Output Layout Qualifiers [4.4.2] For all shader stages: location = integer-constant, index = integer-constant Tessellation Control vertices = integer-constant Geometry Shader points, line_strip, triangle_strip, max_vertices = integer-constant, stream = integer-constant Fragment Shader depth_any, depth_greater, depth_less, depth_unchanged Uniform Variable Layout Qualifiers [4.4.3] location = integer-constant Subroutine Function Layout Qualifiers [4.4.4] index = integer-constant Storage Block Layout Qualifiers [4.4.5] Layout qualifier identifiers for uniform blocks: shared, packed, std140, std340, {row, column}_major, binding = integer-constant Opaque Uniform Layout Qualifiers [4.4.6] Used to bind opaque uniform variables to specific buffers or units. binding = integer-constant Atomic Counter Layout Qualifiers binding = integer-constant, offset = integer-constant (Continued on next page >) The OpenGL® Shading Language is used to create shaders for each of the programmable processors contained in the OpenGL processing pipeline. The OpenGL Shading Language is actually several closely related languages. Currently, these processors are the vertex, tessellation control, tessellation evaluation, geometry, fragment, and compute shaders. [n.n.n] and [Table n.n] refer to sections and tables in the OpenGL Shading Language 4.30 specification at Operators and Expressions [5.1] The following operators are numbered in order of precedence. Relational and equality operators evaluate to Boolean. Also see lessThan(), equal(), etc. 1. ( ) parenthetical grouping 2. [ ] ( ) . ++ -- array subscript function call, constructor, structure field, selector, swizzle postfix increment and decrement 3 . ++ -- + - ~ ! prefix increment and decrement unary 4 . * / % multiplicative 5. + - additive 6. << >> bit-wise shift 7. < > <= >= relational 8. == != equality 9. & bit-wise and 10. ^ bit-wise exclusive or 11. | bit-wise inclusive or 12. && logical and 13. ^^ logical exclusive or 14. | | logical inclusive or 15. ? : selects an entire operand. 16. = += -= *= /= %= <<= >>= &= ^= |= assignment arithmetic assignments 17. , sequence Vector & Scalar Components [5.5] In addition to array numeric subscript syntax, names of vector and scalar components are denoted by a single letter. Components can be swizzled and replicated. Scalars have only an x, r, or s component. {x, y, z, w} Points or normals {r, g, b, a} Colors {s, t, p, q} Texture coordinates Preprocessor [3.3] Preprocessor Directives # #define #elif #if #else #extension #version #ifdef #ifndef #undef #error #include #line #endif #pragma Preprocessor Operators #version 430 #version 430 profile Required when using version 4.30. profile is core, compatibility, or es. #extension extension_name : behavior #extension all : behavior • behavior: require, enable, warn, disable • extension_name: extension supported by compiler, or “all” Predefined Macros __LINE__ __FILE__ Decimal integer constants. __FILE__ says which source string is being processed. __VERSION__ Decimal integer, e.g.: 430 GL_core_profile Defined as 1 GL_es_profile 1 if the implementation supports the es profile GL_compatibility_profile Defined as 1 if the implementation supports the compatibility profile. ©2012 Khronos Group - Rev. 0812 OpenGL Shading Language 4.30 Reference Card Page 7  Operations and Constructors Vector & Matrix [5.4.2] .length() for matrices returns number of columns .length() for vectors returns number of components mat2(vec2, vec2); // 1 col./arg. mat2x3(vec2, float, vec2, float); // col. 2 dmat2(dvec2, dvec2); // 1 col./arg. dmat3(dvec3, dvec3, dvec3); // 1 col./arg. Structure Example [5.4.3] .length() for structures returns number of members struct light {members; }; light lightVar = light(3.0, vec3(1.0, 2.0, 3.0)); Array Example [5.4.4] const float c[3]; c.length() // will return the integer 3 Matrix Examples [5.6] Examples of access components of a matrix with array subscripting syntax: mat4 m; // m is a matrix m[1] = vec4(2.0); // sets 2nd col. to all 2.0 m[0][0] = 1.0; // sets upper left element to 1.0 m[2][3] = 2.0; // sets 4th element of 3rd col. to 2.0 Examples of operations on matrices and vectors: m = f * m; // scalar * matrix component-wise v = f * v; // scalar * vector component-wise v = v * v; // vector * vector component-wise m = m +/- m; // matrix +/- matrix comp.-wise m = m * m; // linear algebraic multiply f = dot(v, v); // vector dot product v = cross(v, v); // vector cross product Structure & Array Operations [5.7] Select structure fields or length() method of an array using the period (.) operator. Other operators: . field or method selector == != equality = assignment [ ] indexing (arrays only) Array elements are accessed using the array subscript operator ( [ ] ), e.g.: diffuseColor += lightIntensity[3]*NdotL; Statements and Structure Subroutines [6.1.2] Subroutine type variables are assigned to functions through the UniformSubroutinesuiv command in the OpenGL API. Declare types with the subroutine keyword: subroutine returnType subroutineTypeName(type0 arg0, type1 arg1, ..., typen argn); Associate functions with subroutine types of matching declarations by defining the functions with the subroutine keyword and a list of subroutine types the function matches: subroutine(subroutineTypeName0, ..., subroutineTypeNameN) returnType functionName(type0 arg0, type1 arg1, ..., typen argn){ ... } // function body Declare subroutine type variables with a specific subroutine type in a subroutine uniform variable declaration: subroutine uniform subroutineTypeName subroutineVarName; Iteration and Jumps [6.3-4] Function call by value-return Iteration for (;;) { break, continue } while ( ) { break, continue } do { break, continue } while ( ); Selection if ( ) { } if ( ) { } else { } switch ( ) { case integer: … break; … default: … } Entry void main() Jump break, continue, return (There is no ‘goto’) Exit return in main() discard // Fragment shader only Qualifiers (cont.) Format Layout Qualifiers One qualifier may be used with variables declared as “image” to specify the image format. For tessellation control shaders: binding = integer-constant, rgba{32,16}f, rg{32,16}f, r{32,16}f, rgba{16,8}, r11f_g11f_b10f, rgb10_a2{ui}, rg{16,8}, r{16,8}, rgba{32,16,8}i, rg{32,16,8} i,r{32,16,8}i, rgba{32,16,8}ui, rg{32,16,8}ui, r{32,16,8}ui, rgba{16,8}_snorm, rg{16,8}_snorm, r{16,8}_snorm Interpolation Qualifiers [4.5] Qualify outputs from vertex shader and inputs to fragment shader. smooth perspective correct interpolation flat no interpolation noperspective linear interpolation Parameter Qualifiers [4.6] Input values copied in at function call time, output values copied out at function return. none (default) same as in in for function parameters passed into function const for function parameters that cannot be written to out for function parameters passed back out of function, but not initialized when passed in inout for function parameters passed both into and out of a function Precision Qualifiers [4.7] Precision qualifiers have no effect on precision; they aid code portability with OpenGL ES: highp, mediump, lowp Invariant Qualifiers Examples [4.8] These are for vertex, tessellation, geometry, and fragment languages. #pragma STDGL invariant(all) force all output variables to be invariant invariant gl_Position; qualify a previously declared variable invariant centroid out vec3 Color; qualify as part of a variable declaration Precise Qualifier [4.9] Ensures that operations are executed in stated order with operator consistency. For example, a fused multiply-add cannot be used in the following; it requires two identical multiplies, followed by an add. precise out vec4 Position = a * b + c * d; Memory Qualifiers [4.10] Variables qualified as “image” can have one or more memory qualifiers. coherent reads and writes are coherent with other shader invocations volatile underlying values may be changed by other sources restrict won’t be accessed by other code readonly read only writeonly write only Order of Qualification [4.11] When multiple qualifiers are present in a declaration they may appear in any order, but must all appear before the type. The layout qualifier is the only qualifier that can appear more than once. Further, a declaration can have at most one storage qualifier, at most one auxiliary storage qualifier, and at most one interpolation qualifier. Multiple memory qualifiers can be used. Any violation of these rules will cause a compile- time error. Built-In Constants [7.3] The following are provided to all shaders. The actual values are implementation-dependent, but must be at least the value shown. const ivec3 gl_MaxComputeWorkGroupCount[] = {65535, 65535, 65535} ; const ivec3 gl_MaxComputeLocalWorkSize[] = {1024, 1024, 64}; const int gl_MaxComputeUniformComponents = 1024; const int gl_MaxComputeTextureImageUnits = 16; const int gl_MaxComputeImageUniforms = 8; const int gl_MaxComputeAtomicCounters = 8; const int gl_MaxComputeAtomicCounterBuffers = 1; const int gl_MaxVertexAttribs = 16; const int gl_MaxVertexUniformComponents = 1024; const int gl_MaxVaryingComponents= 60; const int gl_MaxVertexOutputComponents = 64; const int gl_MaxGeometryInputComponents = 64; const int gl_MaxGeometryOutputComponents = 128; const int gl_MaxFragmentInputComponents = 128; const int gl_MaxVertexTextureImageUnits = 16; const int gl_MaxCombinedTextureImageUnits = 80; const int gl_MaxTextureImageUnits = 16; const int gl_MaxImageUnits = 8; const int gl_ MaxCombinedImageUnitsAndFragmentOutputs = 8; const int gl_MaxImageSamples = 0; const int gl_MaxVertexImageUniforms= 0; const int gl_MaxTessControlImageUniforms = 0; const int gl_MaxTessEvaluationImageUniforms = 0; const int gl_MaxGeometryImageUniforms = 0; const int gl_MaxFragmentImageUniforms = 8; const int gl_MaxCombinedImageUniforms = 8; const int gl_MaxFragmentUniformComponents = 1024; const int gl_MaxDrawBuffers = 8; const int gl_MaxClipDistances = 8; const int gl_MaxGeometryTextureImageUnits = 16; const int gl_MaxGeometryOutputVertices = 256; const int gl_MaxGeometryTotalOutputComponents = 1024; const int gl_MaxGeometryUniformComponents = 1024; const int gl_MaxGeometryVaryingComponents = 64; const int gl_MaxTessControlInputComponents = 128; const int gl_MaxTessControlOutputComponents = 128; const int gl_MaxTessControlTextureImageUnits = 16; const int gl_MaxTessControlUniformComponents = 1024; const int gl_MaxTessControlTotalOutputComponents = 4096; const int gl_MaxTessEvaluationInputComponents = 128; const int gl_MaxTessEvaluationOutputComponents = 128; const int gl_MaxTessEvaluationTextureImageUnits = 16; const int gl_MaxTessEvaluationUniformComponents = 1024; const int gl_MaxTessPatchComponents = 120; const int gl_MaxPatchVertices = 32; const int gl_MaxTessGenLevel = 64; const int gl_MaxViewports = 16; const int gl_MaxVertexUniformVectors = 256; const int gl_MaxFragmentUniformVectors = 256; const int gl_MaxVaryingVectors = 15; const int gl_MaxVertexAtomicCounters = 0; const int gl_MaxTessControlAtomicCounters = 0; const int gl_MaxTessEvaluationAtomicCounters = 0; const int gl_MaxGeometryAtomicCounters = 0; const int gl_MaxFragmentAtomicCounters = 8; const int gl_MaxCombinedAtomicCounters = 8; const int gl_MaxAtomicCounterBindings = 1; const int gl_MaxVertexAtomicCounterBuffers = 0; const int gl_MaxTessControlAtomicCounterBuffers = 0; const int gl_MaxTessEvaluationAtomicCounterBuffers = 0; const int gl_MaxGeometryAtomicCounterBuffers = 0; const int gl_MaxFragmentAtomicCounterBuffers = 1; const int gl_MaxCombinedAtomicCounterBuffers = 1; const int gl_MaxAtomicCounterBufferSize = 16384; const int gl_MinProgramTexelOffset = -8; const int gl_MaxProgramTexelOffset = 7; Built-In Variables [7] Shaders communicate with fixed-function OpenGL pipeline stages and other shader executables through built-in variables. Vertex Language Inputs in int gl_VertexID; in int gl_InstanceID; Outputs out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; }; Tessellation Control Language Inputs in gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; } gl_in[gl_MaxPatchVertices]; in int gl_PatchVerticesIn; in int gl_PrimitiveID; in int gl_InvocationID; Outputs out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; } gl_out[]; patch out float gl_TessLevelOuter[4]; patch out float gl_TessLevelInner[2]; Tessellation Evaluation Language Inputs in gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; } gl_in[gl_MaxPatchVertices]; in int gl_PatchVerticesIn; in int gl_PrimitiveID; in vec3 gl_TessCoord; patch in float gl_TessLevelOuter[4]; patch in float gl_TessLevelInner[2]; Outputs out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[];}; Geometry Language Inputs in gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; } gl_in[]; in int gl_PrimitiveIDIn; in int gl_InvocationID; Outputs out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; }; out int gl_PrimitiveID; out int gl_Layer; out int gl_ViewportIndex; Fragment Language Inputs in vec4 gl_FragCoord; in bool gl_FrontFacing; in float gl_ClipDistance[]; in vec2 gl_PointCoord; in int gl_PrimitiveID; in int gl_SampleID; in vec2 gl_SamplePosition; in int gl_SampleMask[]; in int gl_Layer; in int gl_ViewportIndex; Outputs out float gl_FragDepth; out int gl_SampleMask[]; Compute Language More information in diagram on page 11. Inputs Work group dimensions in uvec3 gl_NumWorkGroups; const uvec3 gl_WorkGroupSize; Work group and invocation IDs in uvec3 gl_WorkGroupID; in uvec3 gl_LocalInvocationID; Derived variables in uvec3 gl_GlobalInvocationID; in uint gl_LocalInvocationIndex; ©2012 Khronos Group - Rev. 0812 Page 8 OpenGL Shading Language 4.30 Reference Card  Built-In Functions Angle & Trig. Functions [8.1] Functions will not result in a divide-by-zero error. If the divisor of a ratio is 0, then results will be undefined. Component-wise operation. Parameters specified as angle are in units of radians. Tf=float, vecn. Tf radians(Tf degrees) degrees to radians Tf degrees(Tf radians) radians to degrees Tf sin(Tf angle) sine Tf cos(Tf angle) cosine Tf tan(Tf angle) tangent Tf asin(Tf x) arc sine Tf acos(Tf x) arc cosine Tf atan(Tf y, Tf x) Tf atan(Tf y_over_x) arc tangent Tf sinh(Tf x) hyperbolic sine Tf cosh(Tf x) hyperbolic cosine Tf tanh(Tf x) hyperbolic tangent Tf asinh(Tf x) hyperbolic sine Tf acosh(Tf x) hyperbolic cosine Tf atanh(Tf x) hyperbolic tangent Exponential Functions [8.2] Component-wise operation. Tf=float, vecn. Td= double, dvecn. Tfd= Tf, Td Tf pow(Tf x, Tf y) xy Tf exp(Tf x) ex Tf log(Tf x) ln Tf exp2(Tf x) 2x Tf log2(Tf x) log2 Tfd sqrt(Tfd x) square root Tfd inversesqrt(Tfd x) inverse square root Common Functions [8.3] Component-wise operation. Tf=float, vecn. Tb=bool, bvecn. Ti=int, ivecn. Tu=uint, uvecn. Td= double, dvecn. Tfd= Tf, Td. Tiu= Ti, Tu. Returns absolute value: Tfd abs(Tfd x) Ti abs(Ti x) Returns -1.0, 0.0, or 1.0: Tfd sign(Tfd x) Ti sign(Ti x) Returns nearest integer <= x: Tfd floor(Tfd x) Returns nearest integer with absolute value <= absolute value of x: Tfd trunc(Tfd x) Returns nearest integer, implementation-dependent rounding mode: Tfd round(Tfd x) Returns nearest integer, 0.5 rounds to nearest even integer: Tfd roundEven(Tfd x) Returns nearest integer >= x: Tfd ceil(Tfd x) Returns x - floor(x): Tfd fract(Tfd x) Returns modulus: Tfd mod(Tfd x, Tfd y) Tf mod(Tf x, float y) Td mod(Td x, double y) Returns separate integer and fractional parts: Tfd modf(Tfd x, out Tfd i) Returns minimum value: Tfd min(Tfd x, Tfd y) Tf min(Tf x, float y) Td min(Td x, double y) Tiu min(Tiu x, Tiu y) Ti min(Ti x, int y) Tu min(Tu x, uint y) (Continue ) Common Functions (cont.) Returns maximum value: Tfd max(Tfd x, Tfd y) Tf max(Tf x, float y) Td max(Td x, double y) Tiu max(Tiu x, Tiu y) Ti max(Ti x, int y) Tu max(Tu x, uint y) Returns min(max(x, minVal), maxVal): Tfd clamp(Tfd x, Tfd minVal, Tfd maxVal) Tf clamp(Tf x, float minVal, float maxVal) Td clamp(Td x, double minVal, double maxVal) Tiu clamp(Tiu x, Tiu minVal, Tiu maxVal) Ti clamp(Ti x, int minVal, int maxVal) Tu clamp(Tu x, uint minVal, uint maxVal) Returns linear blend of x and y: Tfd mix(Tfd x, Tfd y, Tfd a) Tf mix(Tf x, Tf y, float a) Td mix(Td x, Td y, double a) Returns true if components in a select components from y, else from x: Tfd mix(Tfd x, Tfd y, Tb a) Returns 0.0 if x < edge, else 1.0: Tfd step(Tfd edge, Tfd x) Tf step(float edge, Tf x) Td step(double edge, Td x) Clamps and smoothes: Tfd smoothstep(Tfd edge0, Tfd edge1, Tfd x) Tf smoothstep(float edge0, float edge1, Tf x) Td smoothstep(double edge0, double edge1, Td x) Returns true if x is NaN: Tb isnan(Tfd x) Returns true if x is positive or negative infinity: Tb isinf(Tfd x) Returns signed int or uint value of the encoding of a float: Ti floatBitsToInt(Tf value) Tu floatBitsToUint(Tf value) Returns float value of a signed int or uint encoding of a float: Tf intBitsToFloat(Ti value) Tf uintBitsToFloat(Tu value) Computes and returns a*b + c. Treated as a single operation when using precise: Tfd fma(Tfd a, Tfd b, Tfd c) Splits x into a floating-point significand in the range [0.5, 1.0) and an integer exponent of 2: Tfd frexp(Tfd x, out Ti exp) Builds a floating-point number from x and the corresponding integral exponent of 2 in exp: Tfd ldexp(Tfd x, in Ti exp) Floating-Point Pack/Unpack [8.4] These do not operate component-wise. Converts each comp. of v into 8- or 16-bit ints, packs results into the returned 32-bit unsigned integer: uint packUnorm2x16(vec2 v) uint packSnorm2x16(vec2 v) uint packUnorm4x8(vec4 v) uint packSnorm4x8(vec4 v) Unpacks 32-bit p into two 16-bit uints, four 8-bit uints, or signed ints. Then converts each component to a normalized float to generate a 2- or 4-component vector: vec2 unpackUnorm2x16(uint p) vec2 unpackSnorm2x16(uint p) vec4 unpackUnorm4x8(uint p) vec4 unpackSnorm4x8(uint p) Packs components of v into a 64-bit value and returns a double-precision value: double packDouble2x32(uvec2 v) Returns a 2-component vector representation of v: uvec2 unpackDouble2x32(double v) Returns a uint by converting the components of a two- component floating-point vector: uint packHalf2x16(vec2 v) Returns a two-component floating-point vector: vec2 unpackHalf2x16(uint v) Geometric Functions [8.5] These functions operate on vectors as vectors, not component-wise. Tf=float, vecn. Td =double, dvecn. Tfd= float, vecn, double, dvecn. float length(Tf x) double length(Td x) length of vector float distance(Tf p0, Tf p1) double distance(Td p0, Td p1) distance between points float dot(Tf x, Tf y) double dot(Td x, Td y) dot product vec3 cross(vec3 x, vec3 y) dvec3 cross(dvec3 x, dvec3 y) cross product Tfd normalize(Tfd x) normalize vector to length 1 Tfd faceforward(Tfd N, Tfd I, Tfd Nref) returns N if dot(Nref, I) < 0, else -N Tfd reflect(Tfd I, Tfd N) reflection direction I - 2 * dot(N,I) * N Tfd refract(Tfd I, Tfd N, float eta) refraction vector Matrix Functions [8.6] N and M are 1, 2, 3, 4. mat matrixCompMult(mat x, mat y) dmat matrixCompMult(dmat x, dmat y) component-wise multiply matN outerProduct(vecN c, vecN r) dmatN outerProduct(dvecN c, dvecN r) outer product (where N != M) matNxM outerProduct(vecM c, vecN r) dmatNxM outerProduct(dvecM c, dvecN r) outer product matN transpose(matN m) dmatN transpose(dmatN m) transpose matNxM transpose(matMxN m) dmatNxM transpose(dmatMxN m) transpose (where N != M) float determinant(matN m) double determinant(dmatN m) determinant matN inverse(matN m) dmatN inverse(dmatN m) inverse Vector Relational Functions [8.7] Compare x and y component-wise. Sizes of the input and return vectors for any particular call must match. Tvec=vecn, uvecn, ivecn. bvecn lessThan(Tvec x, Tvec y) < bvecn lessThanEqual(Tvec x, Tvec y) <= bvecn greaterThan(Tvec x, Tvec y) > bvecn greaterThanEqual(Tvec x, Tvec y) >= bvecn equal(Tvec x, Tvec y) bvecn equal(bvecn x, bvecn y) == bvecn notEqual(Tvec x, Tvec y) bvecn notEqual(bvecn x, bvecn y) != bool any(bvecn x) true if any component of x is true bool all(bvecn x) true if all comps. of x are true bvecn not(bvecn x) logical complement of x Integer Functions [8.8] Component-wise operation. Tu=uint, uvecn. Ti=int, ivecn. Tiu=int, ivecn, uint, uvecn. Adds 32-bit uint x and y, returning the sum modulo 232: Tu uaddCarry(Tu x, Tu y, out Tu carry) Subtracts y from x, returning the difference if non-negative, otherwise 232 plus the difference: Tu usubBorrow(Tu x, Tu y, out Tu borrow) (Continue ) Integer Functions (cont.) Multiplies 32-bit integers x and y, producing a 64-bit result: void umulExtended(Tu x, Tu y, out Tu msb, out Tu lsb) void imulExtended(Ti x, Ti y, out Ti msb, out Ti lsb) Extracts bits [offset, offset + bits - 1] from value, returns them in the least significant bits of the result: Tiu bitfieldExtract(Tiu value, int offset, int bits) Returns the reversal of the bits of value: Tiu bitfieldReverse(Tiu value) Inserts the bits least-significant bits of insert into base: Tiu bitfieldInsert(Tiu base, Tiu insert, int offset, int bits) Returns the number of bits set to 1: Ti bitCount(Tiu value) Returns the bit number of the least significant bit: Ti findLSB(Tiu value) Returns the bit number of the most significant bit: Ti findMSB(Tiu value) Texture Lookup Functions [8.9] Available to vertex, geometry, and fragment shaders. See tables on next page. Atomic-Counter Functions [8.10] Returns the value of an atomic counter. Atomically increments c then returns its prior value: uint atomicCounterIncrement(atomic_uint c) Atomically decrements c then returns its prior value: uint atomicCounterDecrement(atomic_uint c) Atomically returns the counter for c: uint atomicCounter(atomic_uint c) Atomic Memory Functions [8.11] Operates on individual integers in buffer-object or shared-variable storage. OP is Add, Min, Max, And, Or, Xor, Exchange, or CompSwap. uint atomicOP(inout uint mem, uint data) int atomicOP(inout int mem, int data) Image Functions [8.12] In these image functions, IMAGE_PARAMS may be one of the following: gimage1D image, int P gimage2D image, ivec2 P gimage3D image, ivec3 P gimage2DRect image, ivec2 P gimageCube image, ivec3 P gimageBuffer image, int P gimage1DArray image, ivec2 P gimage2DArray image, ivec3 P gimageCubeArray image, ivec3 P gimage2DMS image, ivec2 P int sample gimage2DMSArray image, ivec3 P, int sample Returns the dimensions of the images or images: int imageSize(gimage{1D,Buffer} image) ivec2 imageSize(gimage{2D,Cube,Rect,1DArray, 2DMS} image) ivec3 imageSize(gimage{Cube,2D,2DMS}Array image) vec3 imageSize(gimage3D image) Loads texel at the coordinate P from the image unit image: gvec4 imageLoad(readonly IMAGE_PARAMS) Stores data into the texel at the coordinate P from the image specified by image: void imageStore(writeonly IMAGE_PARAMS, gvec4 data) (Continued on next page >) Type Abbreviations for Built-in Functions: In vector types, n is 2, 3, or 4. Tf=float, vecn. Td =double, dvecn. Tfd= float, vecn, double, dvecn. Tb= bool, bvecn. Tu=uint, uvecn. Ti=int, ivecn. Tiu=int, ivecn, uint, uvecn. Tvec=vecn, uvecn, ivecn. Within any one function, type sizes and dimensionality must correspond after implicit type conversions. For example, float round(float) is supported, but float round(vec4) is not. ©2012 Khronos Group - Rev. 0812 OpenGL Shading Language 4.30 Reference Card Page 9  Texture Functions [8.9] Available to vertex, geometry, and fragment shaders. gvec4=vec4, ivec4, uvec4. gsampler* =sampler*, isampler*, usampler*. The P argument needs to have enough components to specify each dimension, array layer, or comparison for the selected sampler. The dPdx and dPdy arguments need enough components to specify the derivative for each dimension of the sampler. Texture Query Functions [8.9.1] textureSize functions return dimensions of lod (if present) for the texture bound to sampler. Components in return value are filled in with the width, height, depth of the texture. For array forms, the last component of the return value is the number of layers in the texture array. {int,ivec2,ivec3} textureSize( gsampler{1D[Array],2D[Rect,Array],Cube} sampler[, int lod]) {int,ivec2,ivec3} textureSize( gsampler{Buffer,2DMS[Array]}sampler) {int,ivec2,ivec3} textureSize( sampler{1D, 2D, 2DRect,Cube[Array]}Shadow sampler[, int lod]) ivec3 textureSize(samplerCubeArray sampler, int lod) textureQueryLod functions return the mipmap array(s) that would be accessed in the x component of the return value. Returns the computed level of detail relative to the base level in the y component of the return value. vec2 textureQueryLod( gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler, {float,vec2,vec3} P) vec2 textureQueryLod( sampler{1D[Array],2D[Array],Cube[Array]}Shadow sampler, {float,vec2,vec3} P) textureQueryLevels functions return the number of mipmap levels accessible in the texture associated with sampler. int textureQueryLevels( gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler) int textureQueryLevels( sampler{1D[Array],2D[Array],Cube[Array]}Shadow sampler) Texel Lookup Functions [8.9.2] Use texture coordinate P to do a lookup in the texture bound to sampler. For shadow forms, compare is used as Dref and the array layer comes from P.w. For non-shadow forms, the array layer comes from the last component of P. gvec4 texture( gsampler{1D[Array],2D[Array,Rect],3D,Cube[Array]} sampler, {float,vec2,vec3,vec4} P [, float bias]) float texture( sampler{1D[Array],2D[Array,Rect],Cube}Shadow sampler, {vec3,vec4} P [, float bias]) float texture(gsamplerCubeArrayShadow sampler, vec4 P, float compare) Texture lookup with projection. gvec4 textureProj(gsampler{1D,2D[Rect],3D} sampler, vec{2,3,4} P [, float bias]) float textureProj(sampler{1D,2D[Rect]}Shadow sampler, vec4 P [, float bias]) Texture lookup as in texture but with explicit LOD. gvec4 textureLod( gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler, {float,vec2,vec3} P, float lod) float textureLod(sampler{1D[Array],2D}Shadow sampler, vec3 P, float lod) Offset added before texture lookup. gvec4 textureOffset( gsampler{1D[Array],2D[Array,Rect],3D} sampler, {float,vec2,vec3} P, {int,ivec2,ivec3} offset [, float bias]) float textureOffset( sampler{1D[Array],2D[Rect,Array]}Shadow sampler, {vec3, vec4} P, {int,ivec2} offset [, float bias]) Use integer texture coordinate P to lookup a single texel from sampler. gvec4 texelFetch( gsampler{1D[Array],2D[Array,Rect],3D} sampler, {int,ivec2,ivec3} P[, {int,ivec2} lod]) gvec4 texelFetch(gsampler{Buffer, 2DMS[Array]} sampler, {int,ivec2,ivec3} P[, int sample]) Fetch single texel with offset added before texture lookup. gvec4 texelFetchOffset( gsampler{1D[Array],2D[Array],3D} sampler, {int,ivec2,ivec3} P, int lod, {int,ivec2,ivec3} offset) gvec4 texelFetchOffset( gsampler2DRect sampler, ivec2 P, ivec2 offset) Projective texture lookup with offset added before texture lookup. gvec4 textureProjOffset(gsampler{1D,2D[Rect],3D} sampler, vec{2,3,4} P, {int,ivec2,ivec3} offset [, float bias]) float textureProjOffset( sampler{1D,2D[Rect]}Shadow sampler, vec4 P, {int,ivec2} offset [, float bias]) Offset texture lookup with explicit LOD. gvec4 textureLodOffset( gsampler{1D[Array],2D[Array],3D} sampler, {float,vec2,vec3} P, float lod, {int,ivec2,ivec3} offset) float textureLodOffset( sampler{1D[Array],2D}Shadow sampler, vec3 P, float lod, {int,ivec2} offset) Projective texture lookup with explicit LOD. gvec4 textureProjLod(gsampler{1D,2D,3D} sampler, vec{2,3,4} P, float lod) float textureProjLod(sampler{1D,2D}Shadow sampler, vec4 P, float lod) Offset projective texture lookup with explicit LOD. gvec4 textureProjLodOffset(gsampler{1D,2D,3D} sampler, vec{2,3,4} P, float lod, {int, ivec2, ivec3} offset) float textureProjLodOffset(sampler{1D,2D}Shadow sampler, vec4 P, float lod, {int, ivec2} offset) Texture lookup as in texture but with explicit gradients. gvec4 textureGrad( gsampler{1D[Array],2D[Rect,Array],3D,Cube[Array]} sampler, {float, vec2, vec3,vec4} P, {float, vec2, vec3} dPdx, {float, vec2, vec3} dPdy) float textureGrad( sampler{1D[Array],2D[Rect,Array], Cube}Shadow sampler, {vec3,vec4} P, {float,vec2} dPdx, {float,vec2, vec3} dPdy) Texture lookup with both explicit gradient and offset. gvec4 textureGradOffset( gsampler{1D[Array],2D[Rect,Array],3D} sampler, {float,vec2,vec3} P, {float,vec2,vec3} dPdx, {float,vec2,vec3} dPdy, {int,ivec2,ivec3} offset) float textureGradOffset( sampler{1D[Array],2D[Rect,Array]}Shadow sampler, {vec3,vec4} P, {float,vec2} dPdx, {float,vec2}dPdy, {int,ivec2} offset) Texture lookup both projectively as in textureProj, and with explicit gradient as in textureGrad. gvec4 textureProjGrad(gsampler{1D,2D[Rect],3D} sampler, {vec2,vec3,vec4} P, {float,vec2,vec3} dPdx, {float,vec2,vec3} dPdy) float textureProjGrad(sampler{1D,2D[Rect]}Shadow sampler, vec4 P, {float,vec2} dPdx, {float,vec2} dPdy) Texture lookup projectively and with explicit gradient as in textureProjGrad, as well as with offset as in textureOffset. gvec4 textureProjGradOffset( gsampler{1D,2D[Rect],3D} sampler, vec{2,3,4} P, {float,vec2,vec3} dPdx, {float,vec2,vec3} dPdy, {int,ivec2,ivec3} offset) float textureProjGradOffset( sampler{1D,2D[Rect]Shadow sampler, vec4 P, {float,vec2} dPdx, {float,vec2} dPdy, {ivec2,int,vec2} offset) Texture Gather Instructions [8.9.3] These functions take components of a floating-point vector operand as a texture coordinate, determine a set of four texels to sample from the base level of detail of the specified texture image, and return one component from each texel in a four-component result vector. gvec4 textureGather( gsampler{2D[Array,Rect],Cube[Array]} sampler, {vec2,vec3,vec4} P [, int comp]) vec4 textureGather( sampler{2D[Array,Rect],Cube[Array]}Shadow sampler, {vec2,vec3,vec4} P, float refZ) Texture gather as in textureGather by offset as described in textureOffset except minimum and maximum offset values are given by {MIN, MAX}_PROGRAM_TEXTURE_GATHER_OFFSET. gvec4 textureGatherOffset(gsampler2D[Array,Rect] sampler, {vec2,vec3} P, ivec2 offset [, int comp]) vec4 textureGatherOffset( sampler2D[Array,Rect]Shadow sampler, {vec2,vec3} P, float refZ, ivec2 offset) Texture gather as in textureGatherOffset except offsets determines location of the four texels to sample. gvec4 textureGatherOffsets(gsampler2D[Array,Rect] sampler, {vec2,vec3} P, ivec2 offsets[4] [, int comp]) vec4 textureGatherOffsets( sampler2D[Array,Rect]Shadow sampler, {vec2,vec3} P, float refZ, ivec2 offsets[4]) Built-In Functions (cont.) Image Functions (cont.) Adds the value of data to the contents of the selected texel: uint imageAtomicAdd(IMAGE_PARAMS, uint data) int imageAtomicAdd(IMAGE_PARAMS, int data) Takes the minimum of the value of data and the contents of the selected texel: uint imageAtomicMin(IMAGE_PARAMS, uint data) int imageAtomicMin(IMAGE_PARAMS, int data) Takes the maximum of the value data and the contents of the selected texel: uint imageAtomicMax(IMAGE_PARAMS, uint data) int imageAtomicMax(IMAGE_PARAMS, int data) Performs a bit-wise AND of the value of data and the contents of the selected texel: uint imageAtomicAnd(IMAGE_PARAMS, uint data) int imageAtomicAnd(IMAGE_PARAMS, int data) Performs a bit-wise OR of the value of data and the contents of the selected texel: uint imageAtomicOr(IMAGE_PARAMS, uint data) int imageAtomicOr(IMAGE_PARAMS, int data) (Continue ) Integer Functions (cont’d) Performs a bit-wise exclusive OR of the value of data and the contents of the selected texel: uint imageAtomicXor(IMAGE_PARAMS, uint data) int imageAtomicXor(IMAGE_PARAMS, int data) Copies the value of data: uint imageAtomicExchange(IMAGE_PARAMS, uint data) int imageAtomicExchange(IMAGE_PARAMS, int data) Compares the value of compare and contents of selected texel. If equal, the new value is given by data; otherwise, it is taken from the original value loaded from texel: uint imageAtomicCompSwap(IMAGE_PARAMS, uint compare, uint data) int imageAtomicCompSwap(IMAGE_PARAMS, int compare, int data) Fragment Processing Functions [8.13] Available only in fragment shaders. Tf=float, vecn. Derivative fragment-processing functions Tf dFdx(Tf p) derivative in x Tf dFdy(Tf p) derivative in y Tf fwidth(Tf p) sum of absolute derivative in x and y; abs(dFdx(p)) + abs(dFdy(p)); Interpolation fragment-processing functions Return value of interpolant sampled inside pixel and the primitive: Tf interpolateAtCentroid(Tf interpolant) Return value of interpolant at location of sample # sample: Tf interpolateAtSample(Tf interpolant, int sample) Return value of interpolant sampled at fixed offset offset from pixel center: Tf interpolateAtOffset(Tf interpolant, vec2 offset) Noise Functions [8.14] Returns noise value. Available to fragment, geometry, and vertex shaders. n is 2, 3, or 4: float noise1(Tf x) vecn noisen(Tf x) Geometry Shader Functions [8.15] Only available in geometry shaders. Emits values of output variables to current output primitive stream stream: void EmitStreamVertex(int stream) Completes current output primitive stream stream and starts a new one: void EndStreamPrimitive(int stream) (Continue ) Geometry Shader Functions (cont’d) Emits values of output variables to the current output primitive: void EmitVertex() Completes output primitive and starts a new one: void EndPrimitive() Other Shader Functions [8.16-17] See diagram on page 11 for more information. Synchronizes across shader invocations: void barrier() Controls ordering of memory transactions issued by a single shader invocation: void memoryBarrier() Controls ordering of memory transactions as viewed by other invocations in a compute work group: void groupMemoryBarrier() Order reads and writes accessible to other invocations: void memoryBarrierAtomicCounter() void memoryBarrierShared() void memoryBarrierBuffer() void memoryBarrierImage() ©2012 Khronos Group - Rev. 0812 Page 10 OpenGL 4.3 API Reference Card OpenGL Pipeline A typical program that uses OpenGL begins with calls to open a window into the framebuffer into which the program will draw. Calls are made to allocate a GL context which is then associated with the window, then OpenGL commands can be issued. The heavy black arrows in this illustration show the OpenGL pipeline and indicate data flow. Blue blocks indicate various buffers that feed or get fed by the OpenGL pipeline. Green blocks indicate fixed function stages. Yellow blocks indicate programmable stages. Texture binding Buffer binding Vertex & Tessellation Details Each vertex is processed either by a vertex shader or fixed-function vertex processing (compatibility only) to generate a transformed vertex, then assembled into primitives. Tessellation (if enabled) operates on patch primitives, consisting of a fixed- size collection of vertices, each with per-vertex attributes and associated per-patch attributes. Tessellation control shaders (if enabled) transform an input patch and compute per-vertex and per- patch attributes for a new output patch. A fixed-function primitive generator subdivides the patch according to tessellation levels computed in the tessellation control shaders or specified as fixed values in the API (TCS disabled). The tessellation evaluation shader computes the position and attributes of each vertex produced by the tessellator. Orange blocks indicate features of the Core specification. Purple blocks indicate features of the Compatibility specification. Green blocks indicate features new or significantly changed with OpenGL 4.x. Geometry & Follow-on Details Geometry shaders (if enabled) consume individual primitives built in previous primitive assembly stages. For each input primitive, the geometry shader can output zero or more vertices, with each vertex directed at a specific vertex stream. The vertices emitted to each stream are assembled into primitives according to the geometry shader’s output primitive type. Transform feedback (if active) writes selected vertex attributes of the primitives of all vertex streams into buffer objects attached to one or more binding points. Primitives on vertex stream zero are then processed by fixed-function stages, where they are clipped and prepared for rasterization. Orange blocks indicate features of the Core specification. Purple blocks indicate features of the Compatibility specification. Green blocks indicate features new or significantly changed with OpenGL 4.x. OpenGL Diagrams T B ©2012 Khronos Group - Rev. 0812 OpenGL 4.3 API Reference Card Page 11 OpenGL Compute Programming Model and Compute Memory Hierarchy OpenGL Texture Views and Texture Object State Use the barrier function to synchronize invocations in a work group: void barrier(); Use the memoryBarrier* or groupMemoryBarrier functions to order reads/writes accessible to other invocations: void memoryBarrier(); void memoryBarrierAtomicCounter(); void memoryBarrierBuffer(); void memoryBarrierImage(); void memoryBarrierShared(); // Only for compute shaders void groupMemoryBarrier(); // Only for compute shaders Use the compute shader built-in variables to specifiy work groups and invocations: in vec3 gl_NumWorkGroups; // Number of workgroups dispatched const vec3 gl_WorkGroupSize; // Size of each work group for current shader in vec3 gl_WorkGroupID; // Index of current work group being executed in vec3 gl_LocalInvocationID; // index of current invocation in a work group in vec3 gl_GlobalInvocationID; // Unique ID across all work groups and threads. (gl_GlobalInvocationID = gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID) gl_WorkGroupSize = (4,2,0) gl_WorkGroupID = (2,0,0) gl_LocalInvocationID = (1,0,0) gl_GlobalInvocationID = (9,0,0) gl_NumWorkGroups = (4,2,0) Texture View Parameters (immutable) TEXTURE_INTERNAL_FORMAT TEXTURE_VIEW_{MIN,NUM}_LEVEL TEXTURE_VIEW_{MIN,NUM}_LAYER TEXTURE_IMMUTABLE_LEVELS TEXTURE_SHARED_SIZE TEXTURE_{RED,GREEN,BLUE,ALPHA,DEPTH,STENCIL}_SIZE TEXTURE_{RED,GREEN,BLUE,ALPHA,DEPTH}_TYPE IMAGE_FORMAT_COMPATIBILITY_TYPE Texture Parameters (immutable) TEXTURE_WIDTH TEXTURE_HEIGHT TEXTURE_DEPTH TEXTURE_SAMPLES TEXTURE_FIXED_SAMPLE_LOCATIONS TEXTURE_COMPRESSED TEXTURE_COMPRESSED_IMAGE_SIZE TEXTURE_IMMUTABLE_FORMAT Texture Parameters (mutable) TEXTURE_SWIZZLE_{R,G,B,A} TEXTURE_MAX_LEVEL TEXTURE_BASE_LEVEL DEPTH_STENCIL_TEXTURE_MODE Sampler Parameters (mutable) TEXTURE_BORDER_COLOR TEXTURE_COMPARE_{FUNC,MODE} TEXTURE_LOD_BIAS TEXTURE_{MAX,MIN}_LOD TEXTURE_{MAG,MIN}_FILTER TEXTURE_SRGB_DECODE TEXTURE_WRAP_{S,T,R} Texture state set with TextureView() enum internalformat // base internal format enum target // texture target uint minlevel // first level of mipmap uint numlevels // number of mipmap levels uint minlayer // first layer of array texture uint numlayers // number of layers in array ©2012 Khronos Group - Rev. 0812 Page 12 OpenGL 4.3 API Reference Card OpenGL is a registered trademark of Silicon Graphics International, used under license by Khronos Group. The Khronos Group is an industry consortium creating open standards for the authoring and acceleration of parallel computing, graphics and dynamic media on a wide variety of platforms and devices. See to learn more about the Khronos Group. See to learn more about OpenGL. OpenGL API and OpenGL Shading Language Reference Card Index The following index shows each item included on this card along with the page on which it is described. The color of the row in the table below is the color of the pane to which you should refer. A ActiveShaderProgram 1 ActiveTexture 2 Angle Functions 8 Arrays 7 Atomic Counter Functions 8 Atomic Memory Functions 8 AttachShader 1 B BeginConditionalRender 4 BeginQuery{Indexed} 1 BeginQuery 5 BeginTransformFeedback 4 BindAttribLocation 4 BindBuffer* 1 BindFramebuffer 3 BindFragData* 4 BindImageTexture 3 BindProgramPipeline 1 BindRenderbuffer 3 BindSampler 2 BindTexture 2 BindTransformFeedback 4 BindVertex{Buffer, Array} 4 BlendColor 5 BlendEquation{Separate}* 5 BlendFunc{Separate}* 5 BlitFramebuffer 5 Buffer Objects 1 Buffer Textures 2 Buffer{Sub}Data 1 C CheckFramebufferStatus 3 ClampColor 5 Clear 5 ClearBuffer{Sub}Data 1 ClearBuffer* 5 ClearColor 5 ClearDepth{f} 5 ClearStencil 5 ClientWaitSync 1 ColorMask{i} 5 Command Letters 1 Common Functions 8 CompileShader 1 CompressedTexImage* 2 CompressedTexSubImage* 2 Compute Programming Diagram 11 Compute Shaders 5 Constants 7 Constructors 7 Conversions 6 CopyBufferSubData 1 CopyImageSubData 5 CopyTexImage* 2 CopyTexSubImage* 2 CreateProgram 1 CreateShader{Programv} 1 Cube Map Texture Select 3 CullFace 4 D DebugMessage* 5 DeleteBuffers 1 DeleteFramebuffers 3 DeleteProgram{Pipelines} 1 DeleteQueries 1 DeleteRenderbuffers 3 DeleteSamplers 2 DeleteShader 1 DeleteSync 1 DeleteTextures 2 DeleteTransformFeedbacks 4 DeleteVertexArrays 4 DepthFunc 5 DepthMask 5 DepthRange* 4 Derivative Functions 9 DetachShader 1 DispatchCompute* 5 Dithering 5 DrawArrays* 4 DrawBuffer{s} 5 DrawElements* 4 DrawRangeElements{BaseVertex} 4 DrawTransformFeedback* 4 E EnableVertexAttribArray 4 EndQuery{Indexed} 1 Errors 1 Evaluators 6 Exponential Functions 8 F FenceSync 1 Finish 1 Flatshading 4 Floating-point Numbers 1 Floating-Point Pack/Unpack Func. 8 Flush 1 FlushMappedBufferRange 1 Fragment Operations 4,5 Fragment Processing Functions 9 Fragment Shaders 4 Framebuffer 5 Framebuffer Objects 2 FramebufferParameteri 3 FramebufferRenderbuffer 3 FramebufferTexture* 3 FrontFace 4 G GenBuffers 1 GenerateMipmap 3 GenFramebuffers 3 GenProgramPipelines 1 GenQueries 1 GenRenderbuffers 3 GenSamplers 2 GenTextures 2 GenTransformFeedbacks 4 GenVertexArrays 4 Geometric Functions 8 Geometry & Follow-on Diagram 11 GetActiveAtomicCounterBuffer 2 GetActiveAttrib 4 GetActiveSubroutine* 2 GetActiveUniform* 1,2 GetAttachedShaders 3 GetAttribLocation 4 GetBoolean* 5 GetBufferParameter* 1 GetBufferPointerv 1 GetBufferSubData 1 GetCompressedTexImage 3 GetDebugMessageLog 5 GetDouble* 5 GetError 1 GetFloat* 5 GetFragData* 4 GetFramebufferAttachment... 3 GetFramebufferParameteriv 3 GetInteger* 5 GetInteger64v 1 GetIntegerv 5 GetInternalFormat* 5 GetMultisamplefv 4 GetObject{Ptr}Label 5 GetPointerv 5 GetProgram* 1 GetProgramiv 2 GetProgramBinary 1 GetProgram{Pipeline}InfoLog 3 GetProgram{Pipeline, Stage}iv 3 GetQuery* 1 GetRenderbufferParameteriv 3 GetSamplerParameter* 2 GetShaderiv 2 GetShaderInfoLog 3 GetShaderPrecisionFormat 3 GetShaderSource 3 GetString* 5 GetSubroutineIndex 2 GetSubroutineUniformLocation 2 GetSynciv 1 GetTexImage 3 GetTex{Level}Parameter* 3 GetTransformFeedbackVarying 4 GetUniform* 1,2 GetUniform{f d i ui}v 3 GetUniformSubroutineuiv 3 GetVertexAttrib* 3 GL Command Syntax 1 H Hint 5 I Image Functions 8,9 Integer Functions 8 Interpolation Functions 9 Interpolation Qualifiers 7 InvalidateBuffer* 1 InvalidateTex{Sub}Image 3 Invariant Qualifiers 7 IsBuffer 1 IsEnabled* 5 IsFramebuffer 3 IsProgram 1 IsProgramPipeline 3 IsQuery 1 IsRenderbuffer 3 IsSampler 2 IsShader 1 IsSync 1 IsTexture 2 IsTransformFeedback 4 IsVertexArray 4 Iteration and Jumps 7 L Layout Qualifiers 7 LineWidth 4 LinkProgram 1 LogicOp 5 M Macros 6 MapBuffer{Range} 1 Matrices 2 Matrix Examples 7 Matrix Functions 8 MemoryBarrier 2 MemoryBarrier 9 Memory Qualifiers 7 MinSampleShading 4 MultiDraw{Arrays, Elements}* 4 MultiDrawElementsBaseVertex 4 Multisample Fragment Ops 4 Multisample Textures 2 Multisampling 4 N Noise Functions 9 O Object{Ptr}Label 5 Occlusion Queries 5 OpenGL Pipeline Diagram 11 OpenGL Shading Language 6-10 Operators 6 P Pack/Unpack Functions 8 Parameter Qualifiers 7 PatchParameterfv 4 PauseTransformFeedback 4 Pipeline Diagram 11 PixelStore{if} 4 PointParameter* 4 PointSize 4 Polygon{Mode, Offset} 4 Precise & Precision Qualifiers 7 Predefined Macros 6 Preprocessor 6 PrimitiveRestartIndex 4 Program Objects 2 Program Queries 2 ProgramBinary 1 ProgramParameteri 1 ProgramUniform{Matrix}* 2 ProvokingVertex 4 {Push, Pop}Group 5 Q Qualifiers 6,7 QueryCounter 1 R Rasterization 4 ReadBuffer 5 ReadPixels 5 ReleaseShaderCompiler 1 Renderbuffer Object Queries 3 RenderbufferStorage{Multisample} 3 ResumeTransformFeedback 4 S SampleCoverage 4 SampleMaski 4 Sampler Queries 2 SamplerParameter* 2 Scissor{Indexed}* 4 ScissorArrayv 4 Shaders and Programs 1,2 Shader{Binary, Source} 1 ShadersStorageBlockBinding 2 State and State Requests 5 Statements 7 StencilFunc{Separate} 5 StencilMask{Separate} 5 StencilOp{Separate} 5 Structures 7 Subroutine Uniform Variables 2 Subroutines 7 Synchronization 1 T Tessellation Diagram 11 TexBuffer 2 TexImage* 2 TexImage*Multisample 3 TexStorage{1, 2, 3}D 3 TexSubImage* 2 TexParameter* 3 Texture/Texel Functions 9 Texture Queries 9 TextureView 3 Texture View/State Diagram 11 Texturing 2,3 Timer Queries 1 Transform Feedback 4 TransformFeedbackVaryings 4 Trigonometry Functions 8 Types 6 U Uniform Qualifiers 6 Uniform Variables 1,2 Uniform* 2 UniformBlockBinding 2 UniformMatrix* 2 UniformSubroutinesuiv 2 UnmapBuffer 1 UseProgram{Stages} 1 V ValidateProgram{Pipeline} 4 Variables 7 Vector & Matrix 7 Vector Relational Functions 8 Vertex & Tessellation Diagram 11 Vertex Arrays 4 VertexAttrib* 3 VertexAttrib*Format 4 VertexAttrib*Pointer 4 VertexAttrib{Binding, Divisor} 4 VertexBindingDivisor 4 Viewport* 4 W WaitSync 1 Reference card production by Miller & Mattson



需要 8 金币 [ 分享文档获得金币 ] 0 人已下载