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ABSTRACT

We present an approach for learning simple algorithms such as copying, multi-
digit addition and single digit multiplication directly from examples. Our frame-
work consists of a set of interfaces, accessed by a controller. Typical interfaces
are 1-D tapes or 2-D grids that hold the input and output data. For the controller,
we explore a range of neural network-based models which vary in their ability to
abstract the underlying algorithm from training instances and generalize to test ex-
amples with many thousands of digits. The controller is trained using Q-learning
with several enhancements and we show that the bottleneck is in the capabilities
of the controller rather than in the search incurred by Q-learning.

1 INTRODUCTION

Many every day tasks require a multi-step interaction with the world. For example, picking an
apple from a tree requires visual localization of the apple; extending the arm and then fine muscle
control, guided by visual feedback, to pluck it from the tree. While each individual procedure is
not complex, the task nevertheless requires careful sequencing of operations across both visual and
motor systems.

This paper explores how machines can learn algorithms involving a similar compositional structure.
Since our emphasis is on learning the correct sequence of operations, we consider the domain of
arithmetic where the operations themselves are very simple. For example, although learning to add
two digits is straightforward, solving addition of two multi-digit numbers requires precise coordi-
nation of this operation with movement over the sequence and recording of the carry. We explore a
variety of algorithms in this domain, including complex tasks involving addition and multiplication.

Our approach formalizes the notion of a central controller that interacts with the world via a set
of interfaces, appropriate to the task at hand. The controller is a neural network model which must
learn to control the interfaces, via a set of discrete actions (e.g. “move input tape left”, “read”, “write
symbol to output tape”, “write nothing this time step” ) to produce the correct output for given input
patterns. Specifically, we train the controller from large sets of examples of input and output patterns
using reinforcement learning. Our reward signal is sparse, only being received when the model emits
the correct symbol on the output tape.

We consider two separate settings. In the first, we provide supervision in the form of ground truth
actions. In the second, we train only with input-output pairs (i.e. no supervision over actions).
While we are able to solve all the tasks in the latter case, the supervised setting provides insights
about the model limitations and an upper bound on the performance. We evaluate our model on
sequences far longer than those present during training. Surprisingly, we find that controllers with
even modest capacity to recall previous states can easily overfit the short training sequences and not
generalize to the test examples, even if the correct actions are provided. Even with an appropriate
controller, off-the-shelf Q-learning fails on the majority of our tasks. We therefore introduce a
series of modifications that dramatically improve performance. These include: (i) a novel dynamic
discount term that makes the reward invariant to the sequence length; (ii) an extra penalty that aids
generalization and (iii) the deployment of Watkins Q-lambda [Sutton & Barto (1998)].

We would like to direct the reader to the video accompanying this paper
(https://youtu.be/GVe6kfJnRAw). This gives a concise overview of our approach and
complements the following explanations. Full source code for this work can be found at
https://github.com/wojzaremba/algorithm-learning.

§Work done while the author was at Facebook AI Research.
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Figure 1: (a): The input tape and grid interfaces. Both have a single head (gray box) that reads one character
at a time, in response to a read action from the controller. It can also move the location of the head with the
left and right (and up, down) actions. (b) An overview of the model, showing the abstraction of controller and
a set of interfaces (in our experiments the memory interface is not used). (c) An example of the model applied
to the addition task. At time step t1, the controller, a form of RNN, reads the symbol 4 from the input grid
and outputs a no-operation symbol (�) on the output tape and a down action on the input interface, as well as
passing the hidden state to the next timestep.

2 MODEL

Our model consists of an RNN-based controller that accesses the environment through a series of
pre-defined interfaces. Each interface has a specific structure and set of actions it can perform. The
interfaces are manually selected according to the task (see Section 3). The controller is the only
part of the system that learns and has no prior knowledge of how the interfaces operate. Thus the
controller must learn the sequence of actions over the various interfaces that allow it to solve a task.
We make use of three different interfaces:

Input Tape: This provides access to the input data symbols stored on an “infinite” 1-D tape. A read
head accesses a single character at a time through the read action. The head can be moved via the
left and right actions.

Input Grid: This is a 2D version of the input tape where the read head can now be moved by actions
up, down, left and right.

Output Tape: This is similar to the input tape, except that the head now writes a single symbol at a
time to the tape, as provided the controller. The vocabulary includes a no-operation symbol (NOP)
enabling the controller to defer output if it desires. During training, the written and target symbols
are compared using a cross-entropy loss. This provides a differentiable learning signal that is used
in addition to the sparse reward signal provided by the Q-learning.

Fig. 1(a) shows examples of the input tape and grid interfaces. Fig. 1(b) gives an overview of our
controller–interface abstraction and Fig. 1(c) shows an example of this on the addition task (for two
time steps).

For the controller, we explore several recurrent neural network architectures: two different sizes of
1-layer LSTM [Hochreiter & Schmidhuber (1997)], a gated-recurrent unit (GRU)[Cho et al. (2014)]
and a vanilla feed-forward network. Note that RNN-based models are able to remember previous
network state, unlike the the feed-forward network. This is important because some tasks explicitly
require some form of memory, e.g. the carry in addition.

The simple algorithms we consider (see Section 3) have deterministic solutions that can be expressed
as a finite state automata. Thus during training we hope the controller will implicitly learn the correct
automata from the training samples, since this would ensure generalization to sequences of arbitrary
length. On some tasks like reverse, we observe a higher-order form of over-fitting: the model
learns to solve the training tasks correctly and generalizes successfully to test sequences of the same
length (thus is not over-fitting in the standard sense). However, when presented with longer test
sequences the model fails completely. This suggests that the model has converged to an incorrect
local minima, one corresponding to an alternate automata which have an implicit awareness of the
sequence length of which they were trained. See Fig. 4 for an example of this on the reverse task.
Note that this behavior results from the controller, not the learning scheme, since it is present in both
the supervised (Section 5) and Q-learning settings (Section 6). These experiments show the need

2



Under review as a conference paper at ICLR 2016

to carefully adjust the controller capacity to prevent it learning any dependencies on the length of
training sequences, yet ensuring it has enough state to implement the algorithm in question.

As illustrated in Fig. 1(c), the controller passes two signals to the output tape: a discrete action (move
left, move right, write something) and a symbol from the vocabulary. This symbol is produced by
taking the max from the softmax output on the top of the controller. In training, two different signals
are computed from this: (i) a cross-entropy loss is used to compare the softmax output to the target
symbol and (ii) a discrete 1/0 reward if the symbol is correct/incorrect. The first signal gives a
continuous gradient to update the controller parameters via backpropagation. Leveraging the reward
requires reinforcement learning, since many actions might occur before a symbol is written to the
output tape. Thus the action output of the controller is trained with reinforcement learning and the
symbol output is trained by backpropagation.

3 TASKS

We consider six different tasks: copy, reverse, walk, multi-digit addition, 3 number addition and
single digit multiplication. The input interface for copy and reverse is an input tape, but an input
grid for the others. All tasks use an output tape interface. Unless otherwise stated, all arithmetic
operations use base 10. Examples of the six tasks are shown in Fig. 2.

Copy: This task involves copying the symbols from the input tape to the output tape. Although
simple, the model still has to learn the correspondence between input and output symbols, as well
as executing the move right action on the input tape.

Reverse: Here the goal is to reverse a sequence of symbols on the input tape. We provide a special
character “r” to indicate the end of the sequence. The model must learn to move right multiple times
until it hits the “r” symbol, then move to the left, copying the symbols to the output tape.

Walk: The goal is to copy symbols, according to the directions given by an arrow symbol. The
controller starts by moving to the right (suppressing prediction) until reaching one of the symbols
↑, ↓,←. Then it should change it’s direction accordingly, and copy all symbols encountered to the
output tape.

Addition: The goal is to add two multi-digit sequences, provided on an input grid. The sequences
are provided in two adjacent rows, with their right edges aligned. The initial position of the read
head is the last digit of the top number (i.e. upper-right corner). The model has to: (i) memorize
an addition table for pairs of digits; (ii) learn how to move over the input grid and (iii) discover the
concept of a carry.

3 Number Addition: As for the addition task, but now three numbers are to be added. This is more
challenging as the reward signal is less frequent (since more correct actions must be completed
before a correct output digit can be produced). Also the carry now can take on three states (0, 1 and
2), compared with two for the 2 number addition task.

Single Digit Multiplication: This involves multiplying a single digit with a long multi-digit number.
It is of similar complexity to the 2 number addition task, except that the carry can take on more values
∈ [0, 8].

Copy Reverse Walk Addition
3 number
addition

Single digit
multiplication

Figure 2: Examples of the six tasks, presented in their initial state. The yellow box indicates the starting
position of the read head on the Input Interface. The gray characters on the Output Tape are target symbols
used in training.
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4 RELATED WORK

A variety of recent work has explored the learning of simple algorithms. Many of them are different
embodiments of the controller-interface abstraction formalized in our model. The Neural Turing
Machine (NTM) [Graves et al. (2014)] uses a modified LSTM [Hochreiter & Schmidhuber (1997)]
as the controller, and has three inferences: sequential input, delayed output and a differentiable
memory. The model is able to learn simple algorithms including copying and sorting. The Stack
RNN [Joulin & Mikolov (2015)] has an RNN controller and three interfaces: sequential input, a
stack memory and sequential output. The learning of simple binary patterns and regular expressions
is demonstrated. A closely related work to this is [Das et al. (1992)], which was recently extended
in the Neural DeQue [Grefenstette et al. (2015)] to use a list instead. End-to-End Memory Networks
[Sukhbaatar et al. (2015)] use a feed-forward network as the controller and interfaces consisting of
a soft-attention input, plus a delayed output (by a fixed number of “hops”). The model is applied to
simple Q&A tasks, some of which involve logical reasoning. In contrast, our model automatically
determines when to produce output and uses more general interfaces.

However, most of these approaches use continuous interfaces that permit training via back-
propagation of gradients. Our approach differs in that it uses discrete interfaces thus is more chal-
lenging to train since as we must rely on reinforcement learning instead. A notable exception is the
Reinforcement Learning Neural Turing Machine (RLNTM) [Zaremba & Sutskever (2015)] which
is a version of the NTM with discrete interfaces. The Stack-RNN [Joulin & Mikolov (2015)] also
uses a discrete search procedure for its interfaces but it is unclear how this would scale to larger
problems.

The problem of learning algorithms has its origins in the field of program induction [Nordin (1997);
Liang et al. (2013); Wineberg & Oppacher (1994); Solomonoff (1964)]. In this domain, the model
has to infer the source code of a program that solves a given problem. This is a similar goal to ours,
but in quite a different setting. I.e. we do not produce a computer program, but rather a neural net
that can operate with interfaces such as tapes and so implements the program without being human-
readable. A more relevant work is [Schmidhuber (2004)] which learns an algorithms for the Hanoi
tower problem, using a simple form of program induction and incremental learning components.
Genetic algorithms [Holland (1992); Goldberg (1989)] also can be considered a form of program
induction, but are mostly based on a random search strategy rather than a learned one.

Similar to [Mnih et al. (2013)], we train the controller to approximate the Q-function. However,
we introduce several modifications on top of the classical Q-learning. First, we use Watkins Q(λ)
[Watkins (1989); Sutton & Barto (1998)]. This helps to overcome a non-stationary environment. We
are unaware of any prior work that uses Watkins Q(λ) for this purpose. Second, we reparametrized
Q function, to become invariant to the sequence length. Finally, we penalize ||Q(s, •)||, which might
help to remove positive bias [Hasselt (2010)].

5 SUPERVISED EXPERIMENTS

To understand the behavior of our model and to provide an upper bound on performance, we train
our model in a supervised setting, i.e. where the ground truth actions are provided. Note that the
controller must still learn which symbol to output. But this now can be done purely with backprop-
agation since the actions are known.

To facilitate comparisons of difficulty between tasks, we use a common measure of complexity, cor-
responding to the number of time steps required to solve each task (using the ground truth actions∗).
For instance, a reserve task involving a sequence of length 10 requires 20 time-steps (10 steps to
move to the “r” and 10 steps to move back to the start). The conversion factors between sequence
lengths and complexity are as follows: copy=1; reverse=2; walk=1; addition=2; 3 row addition=3
and single digit multiplication=1.

For each task, we train a separate model, starting with sequences of complexity 6 and incrementing
by 4 once it achieves 100% accuracy on held-out examples of the current length. Training stops
once the model successfully generalizes to examples of complexity 1000. Three different cores for
the controllers are explored: (i) a 200 unit, 1-layer LSTM; (iii) a 200 unit, 1-layer GRU model and
∗In practice, multiple solutions can exist (see Appendix A), thus the measure is approximate.
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(iii) a 200 unit, 1-layer feed-forward network. An additional linear layer is placed on top of these
model that maps the hidden state to either action for a given interface, or the target symbol.

In Fig. 3 we show the accuracy of the different controllers on the six tasks for test instances of
increasing complexity, up to 20, 000 time-steps. The simple feed-forward controller generalizes
perfectly on the copy, reverse and walk tasks but completely fails on the remaining ones, due to a
lack of required memory†. The RNN-based controllers succeed to varying degrees, although some
variability in performance is observed.

Further insight can be obtained by examining the internal state of the controller. To do this, we
compute the autocorrelation matrix‡ A of the network state over time when the model is processing
a reverse task example of length 35, having been trained on sequences of length 10 or shorter. For
this problem there should be two distinct states: move right until “r” is reached and then move left
to the start. Fig. 1 plots A for models with three different controllers. The larger the controller
capacity, the less similar the states are within the two phases of execution, showing how it has not
captured the correct algorithm. The figure also shows the confidence in the two actions over time.
In the case of the high capacity models, the initial confidence in the move left action is high, but
this drops off after moving along the sequence. This is because the controller has learned during
training that it should change direction after at most 10 steps. Consequently, the unexpectedly long
test sequence makes it unsure of what the correct action is. By contrast, the simple feed-forward
controller does not show this behavior since it is stateless, thus has no capacity to know where it
is within a sequence. The equivalent automata is shown in Fig. 4(a), while Fig. 4(b) shows the
incorrect time-dependent automata learned by the over-expressive RNN-based controllers. We note
that this argument is empirically supported by our results in Table 2, as well as related work such as
[Graves et al. (2014)] and [Joulin & Mikolov (2015)] which found limited capacity controllers to be
most effective. For example, in the latter case, the counting and memorization tasks used controllers
with just 40 and 100 units respectively.

Walk Task

Figure 3: Test accuracy for all tasks with supervised actions over 10 runs for feed-forward (green), GRU
(red) and LSTM (yellow) controllers. In this setting the optimal policy is provided. Complexity is the number
of time steps required to compute the solution. Every task has slightly different conversion factor between
complexity and the sequence length: a complexity of 104 for copy and walk would mean 104 input symbols;
for reverse would correspond to 104

2
input symbols; for addition would involve two 104

2
long numbers; for 3

row addition would involve three 104

3
long numbers and for single digit multiplication would involve a single

104 long number.

6 Q-LEARNING

In the previous section, we assumed that the optimal controller actions were given during training.
This meant only the output symbols need to be predicted and these could be learned via backpropa-
gation. We now consider the setting where the actions are also learned, to test the true capabilities
of the models to learn simple algorithms from pairs of input and output sequences.

We use Q-learning, a standard reinforcement learning algorithm to learn a sequence of discrete
actions that solves a problem. A function Q, the estimated sum of future rewards, is updated during

†Ammending the interfaces to allow both reading and writing on the same interface would provide a mech-
anism for long-term memory, even with a feed-forward controller. But then the same lack of generalization
issues (encountered with more powerful controllers) would become an issue.
‡Let hi be the controller state at time i, then the autocorrelation Ai,j between time-steps i and j is given

by Ai,j =
〈hi−E,hj−E〉

σ2 , i, j = 1, . . . , T where E =
∑T

k=1 hk

T
, σ2 =

∑T
k=1〈hk−E,hk−E〉

T
. T is the number of

time steps (i.e. complexity).
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Table 1: Three models with different controllers (feed-forward, 200 unit LSTM and 400 unit LSTM) trained
on the reverse task and applied to a 20 digit test example. The top row shows confidence values for the two
actions on the input tape: move left (green) and move right (red) as a function of time. The correct model
should be equivalent to a two-state automata (Fig. 4), thus we expect to see the controller hidden state occupy
two distinct values. The autocorrelation matrices (whose axes are also time) show this to be the case for the
feed-forward model – two distinct blocks of high correlation. However, for the LSTM controllers, this structure
is only loosely present in the matrix, indicating that they have failed to learn the correct algorithm.

right left

(a)

right1 right2 right3 right4 left

(b)

Figure 4: (a): The automata describing the correct solution to the reverse problem. The model first has to go to
the right while suppressing prediction. Then, it has to go to the left and predict what it sees at the given moment
(this figure illustrates only actions over the Input Tape). (b) Another automata that solves the reverse problem
for short sequences, but does not generalize to arbitrary length sequences, unlike (a). Expressive models like
LSTMs tend to learn such incorrect automata.

training according to:

Qt+1(s, a) = Qt(s, a)− α
[
Qt(s, a)−

(
R(s′) + γmax

a
Qn(s

′, a)
)]

(1)

Taking the action a in state s causes a transition to state s′, which in our case is deterministic. R(s′)
is the reward experienced in the state s′. The discount factor is γ and α is the learning rate. The
another commonly considered quantity is V (s) = maxaQ(s, a). V is called the value function,
and V (s) is the expected sum of future rewards starting from the state s. Moreover, Q∗ and V ∗ are
function values for the optimal policy.

Our controller receives a reward of 1 every time it correctly predicts a digit (and 0 otherwise). Since
the overall solution to the task requires all digits to be correct, we terminate a training episode as
soon as an incorrect prediction is made. This learning environment is non-stationary, since even
if the model initially picks the right actions, the symbol prediction is unlikely to be correct, so the
model receives no reward. But further on in training, when the symbol prediction is more reliable,
the correct action will be rewarded§. This is important because reinforcement learning algorithms
assume stationarity of the environment, which is not true in our case. Learning in non-stationary
environments is not well understood and there are no definitive methods to deal with it. However,
empirically we find that this non-stationarity can be partially addressed by the use of Watkins Q(λ)
[Watkins (1989)], as detailed in Section 6.2.
§If we were to use reinforcement to train the symbol output as well as the actions, then the environment

would be stationary. However, this would mean ignoring the reliable signal available from direct backpropaga-
tion of the symbol output.
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6.1 DYNAMIC DISCOUNT

The purpose of the reinforcement learning is to learn a policy that yields the highest sum of the
future rewards. Q-learning does it indirectly by learning a Q-function. The optimal policy can be
extracted by taking argmax over Q(s, •). Note that shifting or scaling Q induces the same policy.
We propose to dynamically rescale Q so (i) it is independent of the length of the episode and (ii) Q
is within a small range, making it easier to predict.

We define Q̂ to be our reparametrization. Q̂(s, a) should be roughly in range [0, 1], and it
should correspond to how close we are to V ∗(s). Q could be decomposed multiplicatively as
Q(s, a) = Q̂(s, a)V ∗(s). However, in practice, we do not have access to V ∗(s), thus instead we
use an estimate of future rewards based on the total number of digits left in the sequence. Since ev-
ery correct prediction yields a reward of 1, the optimal policy should achieve sum of future rewards
equal to the number of remaining symbols to predict. The number of remaining symbols to predict
is known and we denote it by V̂ (s). Note that this is a form of supervision, albeit a weak one.

Therefore, we normalize the Q-function by the remaining sum of rewards left in the task:

Q̂(s, a) :=
Q(s, a)

V̂ (s)

We assume that s transitions to s′, and we re-write the Q-learning update equations:

Q̂(s, a) =
R(s′)

V̂ (s)
+ γmax

a

V̂ (s′)

V̂ (s)
Q̂(s′, a)

Q̂t+1(s, a) = Q̂t(s, a)− α
[
Q̂t(s, a)−

(R(s′)
V̂ (s)

+ γmax
a

V̂ (s′)

V̂ (s)
Q̂t(s

′, a)
)]

Note that V̂ (s) ≥ V̂ (s′), with equality if no digit was predicted at the current time-step. As the
episode progresses, the discount factor V̂ (s′)

V̂ (s)
decreases, making the model greedier. At the end of

the sequence, the discount drops to 1
2 .

6.2 WATKINS Q(λ)

The update to Q(s, a) in Eqn. 1 comes from two parts: the observed reward R(s′) and the estimated
future reward Q(s′, a). In our setting, there are two factors that make the former far more reliable
than the latter: (i) rewards are deterministic and (ii) the non-stationarity (induced by the ongoing
learning of the symbol output by backpropagation) means that estimates of Q(s, a) are unreliable
as environment evolves. Consequently, the single action recurrence used in Eqn. 1 can be improved
upon when on-policy actions are chosen. More precisely, let at, at+1, . . . , at+T be consecutive
actions induced by Q:

at+i = argmax
a

Q(st+i, a)

st+i
at+i−−−→ st+i+1

Then the optimal Q∗ follows the following recursive equation:

Q∗(st, at) =

T∑
i=1

γi−1R(st+i) + γT max
a

Q∗(st+n+1, a)

and the update rule corresponding to Eqn. 1 becomes:

Qt+1(st, at) = Qt(st, at)− α
[
Qt(st, at)−

( T∑
i=1

γi−1R(st+i) + γT max
a

Qt(st+n+1, a)
)]

This is a special form of Watkins Q(λ) [Watkins (1989)] where λ = 1. The classical applications of
Watkins Q(λ) suggest choosing a small λ, which trades-off estimates based on various numbers of
future rewards. λ = 0 rolls back to the classical Q-learning. Due to reliability of our rewards, we
found λ = 1 to be better than λ < 1, however this needs further study.
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Note that this unrolling of rewards can only take place until a non-greedy action is taken. When
using an ε-greedy policy, this means we would expect to be able to unroll ε−1 steps, on average. For
the value of ε = 0.05 used in our experiments, this corresponds to 20 steps on average.

6.3 PENALTY ON Q-FUNCTION

After reparameterizing the Q-function to Q̂ (Section 6.1), the optimal Q̂∗(s, a) should be 1 for the
correct action and zero otherwise. To encourage our estimate Q̂(s, a) to converge to this, we intro-
duce a penalty that “pushes down” on incorrect actions: κ‖

∑
a Q̂(s, a) − 1‖2. This has the effect

of introducing a margin between correct and incorrect actions, greatly improving generalization.
We commence training with κ = 0 and make it non-zero once good accuracy is reached on short
samples (introducing it from the outset hurts learning).

6.4 REINFORCEMENT LEARNING EXPERIMENTS

We apply our enhancements to the six tasks in a series of experiments designed to examine the
contribution of each of them. Unless otherwise specified, the controller is a 1-layer GRU model
with 200 units. This was selected on the basis of its mean performance across the six tasks in the
supervised setting (see Section 5). As the performance of reinforcement learning methods tend to
be highly stochastic, we repeat each experiment 10 times with a different random seed. Each model
is trained using 3× 107 characters which takes ∼ 4 hrs. A model is considered to have successfully
solved the task if it able to give a perfect answer to 50 test instances, each 100 digits in length.
The GRU model is trained with a batch size of 20, a learning rate of α = 0.1, using the same
initialization as [Glorot & Bengio (2010)] but multiplied by 2. All tasks are trained with the same
curriculum used in the supervised experiments (and in [Joulin & Mikolov (2015)]), whereby the
sequences are initially of complexity 6 (corresponding to 2 or 3 digits, depending on the task) and
once 100% accuracy is achieved, increased by 4 until the model is able to solve validation sequences
of length 100.

For 3-row addition, a more elaborate curriculum was needed which started with examples that did
not involve a carry and contained many zero. The test distribution was unaffected. Some examples:
1
2
2

;
2
0
2

;
8 3
3 3
3 7

;
3 2 0 6 9
1 3 1 3 1
2 8 0 8 3

;
8 0 1 8 5 2 0 2 1
1 3 1 4 0 7 0 5 4
3 1 3 2 7 5 0 7 1

.

We show results for various combinations of terms in Table 2. The experiments demonstrate that
standard Q-learning fails on most of our tasks (first six columns). Each of our additions (dynamic
discount, Watkins Q(λ) and penalty term) give significant improvements. When all three are used
our model is able to succeed at all tasks, providing the appropriate curriculum and controller are
used. For the reverse and walk tasks, the default GRU controller failed completely. However, using
a feed-forward controller instead enabled the model to succeed, when dynamic discount and Watkins
Q(λ) was used. As noted above, the 3-row addition required a more careful curriculum before the
model was able to learn successfully. Increasing the capacity of the controller (columns 2-4) hurts
performance, echoing Fig. 1. The last two columns of Table 2 show results on test sequences of
length 1000. Except for multiplication, the models still generalized successfully.

Fig. 5 shows accuracy as a function of test example complexity for standard Q-learning and our
enhanced version. The difference is performance is clear. At very high complexity, corresponding
to 1000’s of digits, the accuracy starts to drop on the more complicated tasks. We note that these
trends are essentially the same as those observed in the supervised setting (Fig. 3), suggesting that
Q-learning is not to blame. Instead, the inability of the controller to learn an automata seems to
be the cause. Potential solutions to this might include (i) noise injection, (ii) discretization of state,
(iii) a state error correction mechanism or (iv) regularizing the learned automata using MDL princi-
ples. However, this issue, the inability of RNN to perfectly represent an automata can be examined
separately from the setting where actions have to be learnt (i.e. in the supervised domain).

Further results can be found in the appendices. For the addition task, our model was able to discover
multiple correct solutions, each with a different movement pattern over the input tape (see Appendix
A). Table 3 in Appendix B sheds light on the trade-off between errors in actions and errors in
symbol prediction by varying the base used in the arithmetic operations and hence the size of the
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Test length 100 100 100 100 100 100 100 100 1000 1000
#Units 600 400 200 200 200 200 200 200 200 200
Discount γ 1 1 1 0.99 0.95 D D D D D
WatkinsQ(λ) × × × × × × X X X X

Task Penalty × × × × × × × X × X

Copying 30% 60% 90% 50% 70% 90% 100% 100% 100% 100%
Reverse 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Reverse (FF controller) 0% 0% 0% 0% 0% 0% 100% 90% 100% 90%
Walk 0% 0% 0% 0% 0% 0% 10% 90% 10% 80%
Walk (FF controller) 0% 0% 0% 0% 0% 0% 100% 100% 100% 100%
2-row Addition 10% 70% 70% 70% 80% 60% 60% 100% 40% 100%
3-row Addition 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3-row Addition (extra curriculum) 0% 50% 80% 40% 50% 50% 80% 80% 10% 60%
Single Digit Multiplication 0% 0% 0% 0% 0% 100% 100% 100% 0% 0%

Table 2: Success rates for classical Q-learning (columns 2-5) versus our enhanced Q-learning. A GRU-based
controller is used on all tasks, except reverse and walk which use a feed-forward network. Curriculum learning
was also used for the 3-row addition task (see text for details). When dynamic discount (D), Watkins Q(λ) and
the penalty term are all used the model consistently succeeds on all tasks. The model still performs well on test
sequences of length 1000, apart from the multiplication task. Increasing the capacity of the controller results in
worse performance (columns 2-4).

(FF) (FF)

Figure 5: Test accuracy as a function of task complexity (10 runs) for standard Q-learning (blue) and our
enhanced version (dynamic discount, Watkins Q(λ) and penalty term). Accuracy corresponds to the fraction
of correct test cases (all digits must be predicted correctly for the instance to be considered correct).

target vocabulary. Appendix C explores the use of non-integer rewards. Surprisingly, this slows
down training, relative to the 0/1 reward structure.

7 DISCUSSION

We have explored the ability of neural network models to learn algorithms for simple arithmetic
operations. Through experiments with supervision and reinforcement learning, we have shown that
they are able to do this successfully, albeit with caveats. Q-learning was shown to work as well as
the supervised case. But, disappointingly, we were not able to find a single controller that could
solve all tasks. We found that for some tasks, generalization ability was sensitive to the memory
capacity of the controller: too little and it would be unable to solve more complex tasks that rely on
carrying state across time; too much and the resulting model would overfit the length of the training
sequences. Finding automatic methods to control model capacity would seem to be important in
developing robust models for this type of learning problem.
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APPENDIX A: DIFFERENT SOLUTIONS TO ADDITION TASK

On examination of the models learned on the addition task, we notice that three different solutions
were discovered. While they all give the correct answer, they differ in their actions over the input
grid, as shown in Fig. 6.

Figure 6: Our model found three different solutions to the addition task, all of which give the correct answer.
The arrows show the trajectory of the read head over the input grid.

APPENDIX B:REWARD FREQUENCY VS REWARD RELIABILITY

We explore how learning time varies as the size of the target vocabulary is varied. This trades off
reward frequency and reliability. For small vocabularies, the reward occurs more often but is less
reliable since the chance of the wrong action sequence yielding the correct result is relatively high
(and vice-versa for for larger vocabularies). For copying and reverse tasks, altering the vocabulary
size just alters the variety of symbols on the tape. However, for the arithmetic operations this in-
volves a change of base, which influences the task in a more complex way. For instance, addition in
base 4 requires the memorization of digit-to-digit addition table of size 16 instead of 100 for the base
10. Table 3 shows the median training time as a function of vocabulary size. The results suggest that
an infrequent but reliable reward is preferred to a frequent but noisy one.

Task
Vocabulary Size

2 3 4 5 6 7 8 9 10

Coping 1.4 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.6
Reverse (FF controller) 6.5 23.8 3.1 3.6 3.8 2.5 2.8 2.0 3.1
Walk (FF controller) 8.7 6.9 6.8 4.0 6.2 5.3 4.4 3.9 11.1
Addition 250.0 30.9 14.5 26.1 21.8 21.9 25.0 23.4 21.1
3-number Addition (extra curriculum) 250.0 61.5 250.0 250.0 112.2 178.2 93.8 79.1 81.9
Single Digit Multiplication invalid 6.2 17.8 20.9 21.4 21.5 22.3 23.3 24.7

Table 3: Median training time (minutes) over 10 runs as we vary the base used (hence vocabulary size) on
different problems. Training stops when the model successfully generalizes to test sequences of length 100.
The results show the relative importance of reward frequency versus reliability, with the latter being more
important.

APPENDIX C: REWARD STRUCTURE

Reward in reinforcement learning systems drives the learning process. In our setting we control the
rewards, deciding when, and how much to give. We now examine various kinds of rewards and their
influence on the learning time of our system.

Our vanilla setting gives a reward of 1 for every correct prediction, and reward 0 for every incorrect
one. We refer to this setting as “0/1 reward”. We consider two other settings in addition to this,
both of which rely on the probabilities of the correct prediction. Let y be the target symbol and
pi = p(y = i), i ∈ [0, 9] be the probability of predicting label i.

In setting “Discretized reward”, we sort pi. That gives us an order on indices a1, a2, . . . , a10, i.e.
pa1 ≥ pa2 ≥ pa3 · · · ≥ pa10 . “Discretized reward” yields reward 1 iff a1 ≡ y, reward 1

2 iff
a2 ≡ y, and reward 1

3 iff a3 ≡ y. Otherwise, environment gives a reward 0. In the “Continuous
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reward” setting, a reward of py is given for every prediction. One could also consider reward log(py),
however this quantity is unbounded, and further processing might be necessary to make it work.

Table 4 gives results for the three different reward structures, showing training time for the five
tasks (training is stopped once the model generalizes to test sequences of length 100). One might
expect that a continuous reward would convey more information than a discrete one, thus result
in faster training. However, the results do not support this hypothesis, as training seems harder
with continuous reward than a discrete one. We hypothesize, that the continuous reward makes
environment less stationary, which might make Q-learning less efficient, although this needs further
verification.

Task
Reward Type

0/1 reward Discretized reward Continuous reward

Coping 0.6 0.6 0.8
Reverse (FF controller) 3.1 3.1 59.7
Walk (FF controller) 11.1 9.5 250.0
Addition 21.1 21.6 24.2
3-number Addition (extra curriculum) 81.9 77.9 131.9
Single Digit Multiplication 24.7 26.5 26.6

Table 4: Median training time (minutes) for the five tasks for the three different reward structures. “0/1 reward”:
the model gets a reward of 1 for every correct prediction, and 0 otherwise. “Discretized reward” provides a
few more values of reward prediction, if sufficiently close to the correct one. “Continuous reward” gives a
probability of correct answer as the reward. See text for details.
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