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Abstract
Recurrent Neural Networks (RNNs) have become increasingly
popular for the task of language understanding. In this task,
a semantic tagger is deployed to associate a semantic label to
each word in an input sequence. The success of RNN may be
attributed to its ability to memorize long-term dependence that
relates the current-time semantic label prediction to the observa-
tions many time instances away. However, the memory capac-
ity of simple RNNs is limited because of the gradient vanishing
and exploding problem. We propose to use an external memory
to improve memorization capability of RNNs. We conducted
experiments on the ATIS dataset, and observed that the pro-
posed model was able to achieve the state-of-the-art results. We
compare our proposed model with alternative models and report
analysis results that may provide insights for future research.
Index Terms: Recurrent Neural Network, Language Under-
standing, Long Short-Term Memory, Neural Turing Machine

1. Introduction
Neural network based methods have recently demonstrated
promising results on many natural language processing tasks [1,
2]. Specifically, recurrent neural networks (RNNs) based meth-
ods have shown strong performances, for example, in language
modeling [3], language understanding [4], and machine transla-
tion [5, 6] tasks.

The main task of a language understanding (LU) system is
to associate words with semantic meanings [7–9]. For example,
in the sentence ”Please book me a ticket from Hong Kong to
Seattle”, a LU system should tag ”Hong Kong” as the departure-
city of a trip and ”Seattle” as its arrival city. The widely used
approaches include conditional random fields (CRFs) [8, 10],
support vector machine [11], and, more recently, RNNs [4, 12].

A RNN consists of an input, a recurrent hidden layer, and
an output layer. The input layer reads each word and the output
layer produces probabilities of semantic labels. The success of
RNNs can be attributed to the fact that RNNs, if successfully
trained, can relate the current prediction with input words that
are several time steps away. However, RNNs are difficult to
train, because of the gradient vanishing and exploding prob-
lem [13]. The problem also limits RNNs’ memory capacity
because error signals may not be able to back-propagated far
enough.

There have been two lines of researches to address this
problem. One is to design learning algorithms that can avoid
gradient exploding, e.g., using gradient clipping [14], and/or
gradient vanishing, e.g., using second-order optimization meth-
ods [15]. Alternatively, researchers have proposed more ad-
vanced model architectures, in contrast to the simple RNN that

uses, e.g., Elman architecture [16]. Specifically, the long short-
term memory (LSTM) [17,18] neural networks have three gates
that control flows of error signals. The recently proposed gated
recurrent neural networks (GRNN) [6] may be considered as a
simplified LSTM with fewer gates.

Along this line of research on developing more advanced
architectures, this paper focuses on a novel neural network ar-
chitecture. Inspired by the recent work in [19], we extend the
simple RNN with Elman architecture to using an external mem-
ory. The external memory stores the past hidden layer activities,
not only from the current sentence but also from past sentences.
To predict outputs, the model uses input observation together
with a content retrieved from the external memory. The pro-
posed model performs strongly on a common language under-
standing dataset and achieves new state-of-the-art results.

This paper is organized as follows. We briefly describe
background of this research in Sec. 2. Section 3 presents de-
tails of the proposed model. Experiments are in section 4. We
relate our research with other works in Sec. 5. Finally, we have
conclusions and discussions in Sec. 6.

2. Background
2.1. Language understanding

A language understanding system predicts an output sequence
with tags such as named-entity given an input sequence words.
Often, the output and input sequences have been aligned. In
these alignments, an input may correspond to a null tag or a
single tag. An example is given in Table 1.

book a flight from Hong Kong to Seattle
- - - - Dpt-city - Arv-city

Table 1: An example of language understanding. Label names
have been shortened to fit. Many words are labeled null or ’-’.

Given a T -length input word sequence xT1 , a correspond-
ing output tag sequence yT1 , and an alignment A, the posterior
probability p(yT1 |A, xT1 ) is approximated by

p(yT1 |xT1 ) ≈
T∏
t=1

p(yt|xt+kt−k), (1)

where k is the size of a context window and t indexes the posi-
tions in the alignment.
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2.2. Simple recurrent neural networks

The above posterior probability can be computed using a RNN.
A RNN consists of an input layer xt, a hidden layer ht, and an
output layer yt. In Elman architecture [16], hidden layer activity
ht is dependent on both the input xt and also recurrently on the
past hidden layer activity ht−1.

Because of the recurrence, the hidden layer activity ht is
dependent on the observation sequence from its beginning. The
posterior probability is therefore computed as follows

p(yT1 |xT1 ) ≈
T∏
t=1

p(yt|xt1)

=

T∏
t=1

p(yt|ht, xt) (2)

where the output yt and hidden layer activity ht are computed
as

yt = g(ht), (3)
ht = σ(xt, ht−1). (4)

In the above equation, g(·) is softmax function and σ(·) is sig-
moid or tanh function. The above model is denoted as simple
RNN, to contrast it with more advanced recurrent neural net-
works described below.

2.3. Recurrent neural networks using gating functions

The current hidden layer activity ht of a simple RNN is related
to its past hidden layer activity ht−1 via the nonlinear function
in Eq. (4). The non-linearity can cause errors back-propagated
from ht to explode or to vanish. This phenomenon prevents
simple RNN from learning patterns that are spanned with long
time dependence [14].

To tackle this problem, long short-term memory (LSTM)
neural network was proposed in [17] with an introduction of
memory cells, linearly dependent on their past values. LSTM
also introduces three gating functions, namely input gate, forget
gate and output gate. We follow a variant of LSTM in [18].

More recently, a gated recurrent neural network
(GRNN) [6] was proposed. Instead of the three gating
functions in LSTM, it uses two gates.

One is a reset gate rt that relates a candidate activation with
the past hidden layer activity ht−1; i.e.,

ĥt = tanh(Wxhxt +Whh(rt � ht−1)) (5)

where ĥt is the candidate activation. Wxh and Whh are the
matrices relate the current observation xt and the past hidden
layer activity. � is element-wise product.

The second gate is an update gate zt that interpolates the
candidate activation and the past hidden layer activity to update
the current hidden layer activity; i.e.,

ht = (1− zt)� ht−1 + zt � ĥt. (6)

These gates are usually computed as functions of the cur-
rent observation xt and the past hidden layer activity; i.e.,

rt = σ(Wxrxt +Whrht−1) (7)
zt = σ(Wxzxt +Whzht−1) (8)

where Wxr and Whr are the weights to observation and to the
past hidden layer activity for the reset gate. Wxz and Whz are
similarly defined for the update gate.

Figure 1: The RNN-EM model. The model reads input xt and
outputs yt. Its hidden layer activity ht depends on the input and
the model’s memory content retrieved in ct. ft and ut are the
forget and update gates. kt, et and vt each denote key, erase
and new content vector. Mt is the external memory. wt is the
weight and it is a function of kt and Mt. Z−1 denotes a time-
delay operator. The diamond symbol � denotes diagonal matrix
multiplication.

3. The RNN-EM architecture
We extend simple RNN in this section to using external mem-
ory. Figure 1 illustrates the proposed model, which we denote it
as RNN-EM. Same as with the simple RNN, it consists of an in-
put layer, a hidden layer and an output layer. However, instead
of feeding the past hidden layer activity directly to the hidden
layer as with the simple RNN, one input to the hidden layer is
from a content of an external memory. RNN-EM uses a weight
vector to retrieve the content from the external memory to use
in the next time instance. The element in the weight vector is
proportional to the similarity of the current hidden layer activ-
ity with the content in the external memory. Therefore, content
that is irrelevant to the current hidden layer activity has small
weights. We describe RNN-EM in details in the following sec-
tions. All of the equations to be described are with their bias
terms, which we omit for simplicity of descriptions. We imple-
mented RNN-EM using Theano [20, 21].

3.1. Model input and output

The input to the model is a dense vector xt ∈ Rd×1. In the
context of language understanding, xt is a projection of input
words, also known as word embedding.

The hidden layer reads both the input xt and a content ct
vector from the memory. The hidden layer activity is computed
as follows

ht = σ(Wihxt +Wcct) (9)

where σ(·) is tanh function. Wih ∈ Rp×d is the weight to the
input vector. ct ∈ Rm×1 is the content from a read operation
to be described in Eq. (15). Wc ∈ Rp×m is the weight to the
content vector.

The output from this model is fed into the output layer as
follows

yt = g(Whoht) (10)

where Who is the weight to the hidden layer activity and g(·) is
softmax function.



Notice that in case of ct = ht−1, the above model is simple
RNN.

3.2. External memory read

RNN-EM has an external memory Mt ∈ Rm×n. It can be
considered as a memory with n slots and each slot is a vector
with m elements. Similar to the external memory in computers,
the memory capacity of RNN-EM may be increased if using a
large n.

The model generates a key vector kt to search for content
in the external memory. Though there are many possible ways
to generate the key vector, we choose a simple linear function
that relates hidden layer activity ht as follows

kt =Wkht (11)

whereWk ∈ Rm×p is a linear transformation matrix. Our intu-
ition is that the memory should be in the same space of or affine
to the hidden layer activity.

We use cosine distance K(u, v) = u·v
‖u‖‖v‖ to compare this

key vector with contents in the external memory. The weight
for the c-th slot Mt(:, c) in memory Mt is computed as follows

ŵt(c) =
expβtK(kt,Mt(:, c))∑
q expβtK(kt,Mt(:, q))

(12)

where the above weight is normalized and sums to 1.0. βt is a
scalar larger than 0.0. It sharpens the weight vector when βt is
larger than 1.0. Conversely, it smooths or dampens the weight
vector when βt is between 0.0 and 1.0. We use the following
function to obtain βt; i.e.,

βt = log(1 + exp(Wβht)) (13)

whereWβ ∈ R1×p maps the hidden layer activity ht to a scalar.
Importantly, we also use a scalar coefficient gt to interpo-

late the above weight estimate with the past weight as follows:

wt = (1− gt)wt−1 + gtŵt (14)

This function is similar to Eq. (6) in the gated RNN, except
that we use a scalar gt to interpolate the weight updates and the
gated RNN uses a vector to update its hidden layer activity.

The memory content is retrieved from the external memory
at time t− 1 using

ct =Mt−1wt−1. (15)

3.3. External memory update

RNN-EM generates a new content vector vt to be added to its
memory; i.e,

vt =Wvht (16)

where Wv ∈ Rm×p. We use the above linear function based
on the same intuition in Sec. 3.2 that the new content and the
hidden layer activity are in the same space of or affine to each
other.

RNN-EM has a forget gate as follows

ft = 1− wt � et (17)

where et ∈ Rn×1 is an erase vector, generated as et =
σ(Wheht). Notice that the c-th element in the forget gate is
zero only if both read weight wt and erase vector et have their
c-th element set to one. Therefore, memory cannot be forgotten
if it is not to be read.

Method F1 score
CRF [26] 92.94

simple RNN [4] 94.11
CNN [27] 94.35

LSTM [28] 94.85
GRNN 94.82

RNN-EM 95.25

Table 2: F1 scores (in %) on ATIS.

RNN-EM has an update gate ut. It simply uses the weight
wt as follows

ut = wt. (18)

Therefore, memory is only updated if it is to be read.
With the above described two gates, the memory is updated

as follows

Mt = diag(ft)Mt−1 + diag(ut)vt (19)

where diag(·) transforms a vector to a diagonal matrix with
diagonal elements from the vector.

Notice that when the number of memory slots is small, it
may have similar performances as a gated RNN. Specifically,
when n = 1, Eqs. (19) and (6) are qualitatively similar.

4. Experiments
4.1. Dataset

In order to compare the proposed model with alternative mod-
eling techniques, we conducted experiments on a well studied
language understanding dataset, Air Travel Information System
(ATIS) [22–24]. The training part of this dataset consists of
4978 sentences and 56590 words. There are 893 sentences and
9198 words for test. The number of semantic label is 127, in-
cluding the common null label. We use lexicon-only features in
experiments.

4.2. Comparison with the past results

The input xt in RNN-EM has a window size of 3, consisting of
the current input word and its neighboring two words. We use
the AdaDelta method to update gradients [25]. The maximum
number of training iterations was 50. Hyper parameters for tun-
ing included the hidden layer size p, the number of memory
slots n, and the dimension for each memory slot m. The best
performing RNN-EM had 100 dimensional hidden layer and 8
memory slots with 40 dimensional memory slot.

Table 2 lists performance in F1 score of RNN-EM, together
with the previous best results of alternative models in the lit-
erature. Since there are no previous results from GRNN, we
use our own implementation of it for this study. These results
are optimal in their respective systems. The previous best result
was achieved using LSTM. A change of 0.38% of F1 score from
LSTM result is significant at the 90% confidence level. Results
in Table 2 show that RNN-EM is significantly better than the
previous best result using LSTM.

4.3. Analysis on convergence and averaged performances

Results in the previous sections were obtained with models us-
ing different sizes. This section further compares neural net-
work models given that they have approximately the same num-
ber of parameters, listed in Table 3. We use AdaDelta [25] gra-
dient update method for all these models. Figure 2 plots their



Model hidden layer dimension # of Parameters
simple RNN 115 ≈ 7.4 ∗ 103

LSTM 50 ≈ 7.5 ∗ 103
GRNN 60 ≈ 7.4 ∗ 103

RNN-EM† 100,40 × 8 ≈ 7.3 ∗ 103
† 100 dimensional hidden layer, 40 dimensional slot with 8
slots.

Table 3: The size of each neural network models.

Figure 2: Convergence of training entropy. The entropy value
has been converted to its logarithm.

training set entropy with respect to iteration numbers. To better
illustrate their convergences, we have converted entropy values
to their logarithms. The results show that RNN-EM converges
to lower training entropy than other models. RNN-EM also con-
verges faster than the simple RNN and LSTM.

We further repeated ATIS experiments for 10 times with
different random seeds for these neural network models. We
evaluated their performances after their convergences. Table 4
lists their averaged F1 scores, together with their maximum and
minimum F1 scores. A change of 0.12% is significant at the
90% confidence level, when comparing against LSTM result.
Results in Table 4 show that RNN-EM, on average, significantly
outperforms LSTM. The best performance by RNN-EM is also
significantly better than the best performing LSTM.

4.4. Analysis on memory size

The size of the external memoryMt is proportional to the num-
ber of memory slots n. We fixed the dimension of memory slots
to 40 and varied the number of slots. Table 5 lists their test set
F1 scores. The best performing RNN-EM was with n = 8. No-
tice that RNN-EM with n = 1 performed better than the simple
RNN with 94.09% F1 score in Table 4. This can be explained as
using gate functions in Eqs. (17) and (18) in RNN-EM, which
are absent in simple RNNs. RNN-EM with n = 1 also per-
formed similarly as the gated RNN with 94.70% F1 score in
Table 4, partly because of these gate functions.

Memory capacity may be measured using training set en-
tropy. Table 5 shows that training set entropy is decreased ini-
tially with n increased from 1 to 8, showing that the memory
capacity of the RNN-EM is improved. However, the entropy is
increased with ns further increased. This suggests that memory

Method Max Min Averaged
simple RNN 94.09 93.64 93.80

LSTM 94.81 94.62 94.73
GRNN 94.70 94.32 94.61

RNN-EM 95.22 94.71 94.96

Table 4: The maximum, minimum and averaged F1 scores (in
%) by neural network models.

slot number n 1 2 4 8 16
F1 score 94.67 94.87 94.91 95.22 94.75

entropy×103 2.23 1.96 1.91 1.90 2.05
slot number n 32 64 128 256 512

F1 score 94.87 94.77 94.57 94.84 94.53
entropy×103 2.16 2.30 2.36 3.43 6.10

Table 5: Test set F1 scores (in %) and training set entropy by
RNN-EM with different slot numbers.

capacity of RNN-EM cannot be increased simply by increasing
the number of slots.

5. Related works
The RNN-EM is along the same line of research in [19, 29]
that uses external memory to improve memory capacity of neu-
ral networks. Perhaps the closest work is the Neural Turing
Machine (NTM) work in [19], which focuses on those tasks
that require simple inference and has proved its effectiveness
in copy, repeat and sorting tasks. NTM requires complex mod-
els because of these tasks. The proposed model is considerably
simpler than NTM and can be considered as an extension of
simple RNN. Importantly, we have shown through experiments
on a common language understanding dataset the promising re-
sults from using the external memory architecture.

6. Conclusions and discussions
In this paper, we have proposed a novel neural network architec-
ture, RNN-EM, that uses external memory to improve memory
capacity of simple recurrent neural networks. On a common
language understanding task, RNN-EM achieves new state-of-
the-art results and performs significantly better than the previ-
ous best result using long short-term memory neural networks.
We have conducted experiments to analyze its convergence and
memory capacity. These experiments provide insights for future
research directions such as mechanisms of accessing memory
contents and methods to increase memory capacity.
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