IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Lean Software Management: BBC Worldwide
Case Study

Peter Middleton and David Joyce

Abstract—This case study examines how the lean ideas behind
the Toyota production system can be applied to software project
management. It is a detailed investigation of the performance of a
nine-person software development team employed by BBC World-
wide based in London. The data collected in 2009 involved direct
observations of the development team, the kanban boards, the daily
stand-up meetings, semistructured interviews with a wide variety
of staff, and statistical analysis. The evidence shows that over the
12-month period, lead time to deliver software improved by 37 %,
consistency of delivery rose by 47 %, and defects reported by cus-
tomers fell 24%. The significance of this work is showing that
the use of lean methods including visual management, team-based
problem solving, smaller batch sizes, and statistical process control
can improve software development. It also summarizes key differ-
ences between agile and lean approaches to software development.
The conclusion is that the performance of the software develop-
ment team was improved by adopting a lean approach. The faster
delivery with a focus on creating the highest value to the customer
also reduced both technical and market risks. The drawbacks are
that it may not fit well with existing corporate standards.

Index Terms—Agile, capability maturity model integrated
(CMMI), development, lead time, lean, process, software, statis-
tical process control.

1. INTRODUCTION

EAN thinking is important because it can reduce error
L rates to one per million units. It has been shown to have
the potential to at least double the productivity of both manufac-
turing and service organizations. It also significantly reduces the
time taken to deliver new products while substantially reducing
cost. The evidence from Toyota (Japan), Porsche (Germany),
and Pratt & Whitney (U.S.) confirms this [1], [2].

Applying the ideas from the Toyota production system (TPS)
[3] or lean thinking to the management of software projects,
therefore, promises great improvements. This case study records
the practical experience gained between April 2008 and October
2009 by the London-based BBC Worldwide when it applied lean
thinking for managing software development.

BBC Worldwide is the main commercial arm and a wholly
owned subsidiary of the British Broadcasting Corporation
(BBC). Its mission is to create, acquire, develop, and exploit

Manuscript received February 10, 2010; revised June 26, 2010, August 24,
2010, and September 2, 2010; accepted September 8, 2010. Review of this
manuscript was arranged by Department Editor J. K. Liker.

P. Middleton is with the School of Electronics, Electrical Engineering,
and Computer Science, Queen’s University Belfast, Belfast, BT7 1NN, U.K.
(e-mail: p.middleton@qub.ac.uk).

D. Joyce was with the BBC Worldwide, London, W12 8QT, U.K. He
is now with the ThoughtWorks, Melbourne, Vic. 3000, Australia (e-mail:
dpjoyce @googlemail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEM.2010.2081675

media content and brands around the world in order to maxi-
mize the value of the BBC’s assets for the benefit of the U.K.
license payer. In 2008/09, BBC Worldwide generated profits
of £103 million (U.S.$ 147 million) (before exceptionals) on
revenues of £1.004 billion. (U.S.$ 1.4 billion) [4].

The basis of lean is the continuous elimination of waste [5].
This requires a focus on the flow of work through the system to
ensure that material is produced only when it is needed and in
the exact quantities required. This enables near-zero inventory
levels to be approached, which makes production more flexible
and also allows sources of defects to be quickly identified.

II. LITERATURE REVIEW

Lean emerged in 1990 as a term to describe the automobile
production processes developed, since 1950 by Toyota. Toyota
is generally regarded as the most efficient and highest quality
producer of motor vehicles in the world. The term lean refers to
the fact that Toyota was observed to use less space, manpower,
materials, and time to make their products than their Western
competitors [6].

The success of Toyota has generated a substantial literature on
every facet of their approach. Schonberger [7] focused on how
“‘just-in-time’” production forces problems to the surface so en-
abling a habit of improvement. Imai [8] identified the ‘‘Kaizen’’
philosophy of continuous improvement as being the primary key
to success. Rother and Shook [9] focused on value stream map-
ping as a process for identifying waste and envisioning a future
state, thus enabling an organization to ‘‘see’’ their production
from a new perspective.

Lean practices have been developed over the last 60 years.
There is no pure lean approach as demonstrated by the dif-
ferent descriptions of lean in the literature, which identifies a
range of overlapping lean principles. For example, Liker [1] has
14 principles, Womack and Jones [2] have five principles, and
Shingo [3] also has five but different principles. Ohno’s [5] focus
was to reduce the time from customer order to product deliver
by eliminating waste. Arguably he preached many principles,
even though they are not laid out as such. The complexity of an-
alyzing lean is due to the specifics of each lean implementation
being context-dependent.

When Toyota was setting up a new plant in America, Liker and
Hoseus noted that Toyota ‘‘...were not interested in teaching
us to copy. They were trying to teach us to think and act in the
Toyota Way’’ [10, p. xxii]. Therefore, for Toyota, it was more a
philosophy of management combined with their experience of
what was successful that was important.

For an organization to adopt a new philosophy and *‘see
their task differently is a major change management exercise.

L]

0018-9391/$26.00 © 2010 IEEE



The lean deployment literature, therefore, includes stories il-
lustrating the hurdles [11], [12] and detailed practical guides
[13]-[15].

Lean development of new products is significantly different
to conventional Western approaches [6], [16], [17]. Key ele-
ments include heavyweight project managers, integrating sys-
tems, cultivating organizational knowledge, and long-term staff
deployment patterns. The techniques of deliberately delaying
decisions [18] and set-based concurrent engineering [19] also
provide substantial benefits.

Software is more malleable and cheaper to distribute than
manufactured products. Software development is therefore,
somewhat different to conventional product development and
production. However, at a higher level, the principles are still
the same in any specific application area [1]. It has been more
common in software development to draw on concepts from the
Toyota Production System [3] [5], such as kanban, with fruitful
results. But some core concepts from lean product development
like front-end loading using set-based methods are particularly
important for software development [17].

If user requirements, likely patterns of use, and technology
performance are unclear, then good initial design is difficult
[20]. An alternative to ‘‘paralysis by analysis’’ is to have a fast
process that produces software deliverables quickly to respond,
as understanding of the business increases. Lean offers a way to
optimize and discipline this process.

Lean as an approach to management can travel globally, and
when combined with lower labor costs in developing countries
can be a major threat to Western jobs [21]. Workers have also
experienced lean as a mechanism for capital to exploit and stress
the labor force; therefore, it has not been universally welcomed
[22]. Lean has been successfully applied to aerospace [23] and
services [24], [25]. By focusing on increasing the speed from
““order to cash’’ and the continuous elimination of waste, there
is no theoretical reason it cannot be applied to any area [5].

The first recorded experiments with lean software develop-
ment were by Middleton [26]. Microsoft reported how the lean
mistake proofing of a software process eradicated whole classes
of errors [27]. The U.S. Department of Defense (DoD) con-
cluded lean techniques were the only way forward [28]. The
Cummins Engine Company ‘*. . .provides some compelling ev-
idence that the ideas of lean manufacturing are indeed appli-
cable, in principle, to software development.”’ [29]. The DoD
concluded that “*.. .shifting to lean principles improves cycle
time reduction and overall quality in the software development
process.” [30].

Lean software development is an evolutionary, incremental
approach as advocated by Gilb [31]. The mathematical basis
of lowering batch size to reduce lead time has been well de-
scribed [32]. Although it has different intellectual roots, it has
much in common with Agile software development. The Agile
Manifesto, which was produced in 2001 [33] contains no refer-
ences to lean. Agile was mainly a reaction against the document
heavy, plan driven software development approaches that were
frequently not successful. However, lean ideas helped provide
a context and specific tools for the development of Agile. For
example “scrumban” [40] is derived from kanban. The scrum

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

itself is similar to Toyota’s small work groups with their daily
stand-up meetings.

The use of statistical process control in lean software de-
velopment means that it has the quantitative rigor required by
Capability Maturity Model Integrated (CMMI) level 4 [34].
CMMLI is important because is it mandatory for the U.S. DoD
software contracts and has also been adopted by some large com-
panies. After 20 years in existence, the independent evidence
that CMMI leads to improvements in product cost, quality, and
timeliness is ‘‘slowly accumulating’’ [35].

Lean software is, therefore, attractive to both defense con-
tractors obliged to use CMMI and corporations who use lean to
manage their manufacturing operations. They both also usually
have a large proportion of the value of their products created by
the software embedded in them. A lean software process can,
therefore, offer them three benefits.

1) The statistical process control in lean software could al-
low them to quantify their software development pro-
cess, which may enable them to achieve certification to
CMMI level 4. This would allow them to bid for the DoD
contracts.

2) Using lean for both their manufacturing and software
development would provide a common approach and
language, therefore, simplifying management of their
operations.

3) If lean does quickly enable an intrinsically lower risk and
more productive approach to develop software, then it will
increase profits.

Timberline Software in Oregon in 2002 with 450 staff was the
first recorded full industrial implementation of lean software de-
velopment. They reported considerable improvement, but their
focus on setting a common tempo or ‘‘Takt" time for software
development based on creating similar-sized work units was not
easy to implement [36].

Early lean software ideas were developed by Poppendieck
[37] and Middleton and Sutton [38]. These books explored how
lean thinking could be transferred from manufacturing to the
more intangible world and different culture of software engi-
neers. Specific techniques on how the concept of kanban could
be applied to software were also developed [39], [40]. Note
that the use of these methods is partly a metaphor rather than
a direct copying. For example, kanban in factories literally is
a binary signal to replenish an inventory buffer, based on what
the customer has taken away. In software it performs a similar
function, but more broadly displays information on the status of
the process and potential problems.

Moving upstream and applying lean thinking to influence
project selection and definition also creates great benefits [41].
The proceedings of the first Lean & Kanban Software confer-
ence [42] and the work of Shalloway et al. [43] show adoption
is spreading. However, there is a clear need for more rigorous
case studies of implementations.

III. RESEARCH METHODOLOGY

The research hypothesis was that the application of lean
ideas would improve the capability of a software development



MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 3

process. In operational terms this meant that implementing lean
practices, which included low work in progress (WIP), and
pulling work into the process only when there was capacity,
would show evidence of reduced lead times, error rates, and
variability, while demonstrating continuous process improve-
ment. The null hypothesis was that the application of lean ideas
would have no or a negative impact on the capability of a soft-
ware process.

The research method was for an experienced researcher to
observe and write up the operation of the BBC Worldwide
Webmedia Department’s software processes. The seven visits
to London of 2-3 days each took place between June and Oc-
tober 2009. These were supplemented by numerous phone calls
and e-mails.

The advice that with case study research ‘. . .close adherence
to the data keeps researchers “honest”.” was followed [44]. The
pure positivist approach is that truth can always be discerned
from untruth, and that the truth can be discerned either by de-
duction or by empirical support and by no other means [45]. The
interpretivist model is that that an in-depth understanding of a
phenomenon may only be gained by studying it in context from
the participants’ perspectives [46]. For this study, the position
that both approaches are useful was adopted [47].

Triangulation, gathering data from as many different sources
as possible to assist accuracy was used [48]. Data were collected
from:

1) the most mature software development team, called

Digi-Hub;

2) semistructured interviews with developers, project man-
agers, business analysts, and managers;

3) walking through the operation of the kanban boards that
visually displayed the flow of work so enabling it to be
controlled;

4) recording the precise operation of the lean system;

5) observing the daily “stand-up” meetings where work al-
locations were discussed and agreed;

6) review of statistical analysis of the outputs from the
system;

7) a brief review of the work of four other lean software
teams was carried out.

This is an exploratory case study [49]. The research is asking
knowledge questions focused on recording and understanding
how the system was operating.

Lean is an integrated system and impacts on all aspects of
an organization, particularly in its selection and development of
people [10], [50]. This case study focuses only on a software
development team, as this was not an organization-wide lean
implementation. This meant the team had to work within their
existing framework to adopt lean practices, where they had dis-
cretion in how to manage their own work, and try to influence
other parts of the organization where possible.

Given the constraint of working within an existing framework
rather than a lean organization, the following of Liker’s 14 lean
principles [1] were focused on.

1) Principle 2: Levels of WIP, e.g., requirements, designs,

and code, were deliberately kept as low as possible to
create continuous flow and bring problems to the sur-

face. Process improvement and waste elimination were
routine.

2) Principle 3: Work was “pulled” into the software develop-
ment system only when there was capacity to work on it,
rather than “pushed” in regardless of capacity available.

3) Principle 4: Level out the workload by working with users
upstream in the process to try and smooth future demands.

4) Principle 5: Build a culture of stopping to fix problems.
For example, fixing poorly structured legacy code that was
hindering productivity and product reliability.

5) Principle 6: Continuous improvement and employee em-
powerment by actively looking for “blockers” and insist-
ing all work was handled through the agreed process.

6) Principle 7: Visual controls were used extensively. This
accounts for the reliance on kanban boards as they were
ideal for making the intangible software process visible.

7) Principle 8: Ensure technology serves your people and
process. “Autonomation” [5] where technology can pre-
vent problems was used, for example, to enable the fre-
quent release of software.

The principles of adopting a long-term orientation and creat-

ing a learning organization were invaluable within the team to
guide their behavior.

IV. RELIABILITY OF THE DATA COLLECTED

With a case study, there is a danger of bias in the data col-
lected, which would undermine or destroy the validity of the
results reported. The following areas were reviewed to identify
any possible distortions in the data.

A. Time Line

The implementation of lean was started in April 2008. Due to
the necessity to stabilize the processes and adapt to the changes,
data collection did not start until three months later in August
2008. The data used in this paper refer to the 12 months from
October 2008 to October 2009.

B. Size and Volume of Work Started

The underlying work did not change, but the way it was
managed altered significantly. The approach was to identify the
most valuable feature a customer needed and aim to keep each
software unit being built as small as possible. This focus on
Minimum Marketable Features (MMFs) [39] aimed to deliver
the maximum value as quickly as possible.

Both the size and the volume of work allowed into the devel-
opment system were greatly reduced. In the first five months,
November 2008—March 2009 inclusive, 84 features were started
of which 52% were classified as small. In last five months of
the study, July 2009—November 2009, 64 features (24% fewer)
were started of which 75% were classified as small (see Fig. 1).

C. Complexity of Work

The list of all the work undertaken was reviewed. It was
clear the work was very varied and came from different sources.
There was no evidence to suggest the complexity of the work



required by customers had changed. However, by altering the
focus to deliver the highest value, but in as small as possible
features, the reduced size would make the complexity easier
to handle. This “divide and rule” strategy in effect reduced the
complexity of each unit of software being delivered. Once the
structure of the legacy software had been improved and
the automated tools were in place, the integration of these fre-
quent small deliverables into the large body of live code was not
observed to cause difficulties.

D. Governance Arrangements

The structure was:

1) Business Board (strategy and budget);

2) Project Board (detail and authorize specific work);

3) Product Owner (reconcile business and customer wants);

4) users requesting work (sign off work completed);

5) end users (200-300 people).

End users are those internal to BBC Worldwide. The digital
assets created were ultimately used by millions of people.

This governance structure had been unchanged since before
April 2008, but over the period of the study, it was reported
that stricter identification of the business benefits was required
before projects were authorized. This may mean projects are
better thought through as regards return on investment, but at
the technical level, the work required by the customers was
unchanged.

E. Composition of Team

The team personnel were the same, since October 2008 with
the same project manager. The data reflect the work of all the
team, not just selected high performers. Also, all work carried
out, including low priority and legacy improvements tasks, were
recorded. All the members of the team interviewed reported their
skills had improved over the 12 months.

F. Engineering Practices

Work to improve engineering practices started in April 2008,
which involved the following:

1) test-driven development (unit tests);

2) automated acceptance testing (main suite completed April

2009);

3) source control software;

4) bug-tracking software;

5) decoupling—improving legacy software (April-July 2008)

6) MMEF concept introduced April 2009.

This resulted in higher test coverage and releases increasing
from monthly to almost daily. The same engineering practices
were in place, but their use was consolidated and improved
during the study period.

V. DiGITAL HUB (DI1GI-HUB) TEAM

In 2009, the team had an annual operating cost of £1.5 million
(USS$ 2.2 million) and a development budget of £675K (U.S.$
965K). It was made up of nine staff: project manager, business
analyst, software architect, tester, lead developer, three develop-

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Month starting Small Medium Large
01/11/2008 11 5 0
01/12/2008 5 13 2
01/01/2009 7 5 5
01/02/2009 3 0 0
01/03/2009 18 9 1 Total: 84 features of which 52% small
01/04/2009 13 2 5
01/05/2009 4 0
01/06/2009 5 3 6
01/07/2009 15 1 0
01/08/2009 13 4 1
01/09/2009 8 4 0
01/10/2009 7 2 0
01/11/2009 5 3 1 Total: 64 features of which 75% small

Fig. 1.  Size and volume of work started.

ers, and a support developer. It was working on a mix of devel-
oping new software and software maintenance. The technology
used was C#, NET, MS SQL Server, and legacy connected ser-
vice framework (CSF) code. The Project Board agreed priorities
to be released over the next three months.

In April 2008, all the stages of the development life cycle
(value stream map) were drawn onto the kanban boards. All
work at each stage was then recorded on cards and placed on the
boards. This exercise immediately showed that there was more
WIP and more bottlenecks of work than previously realized.

Restrictions on the amount of WIP allowed at each stage were
putin place. The team determined the WIP levels by starting with
their constraints. They had fewer quality assurance/testing staff
and business analysts than software developers. They were now
seen to be bottlenecks; therefore, the WIP limits were derived
from how much work they could handle. This evened out the
flow of work through the process. The WIP limits were then
revised as constraints moved and more experience was gained.

To break the work down into smaller units that could be
delivered more quickly, the concept of MMF was adopted [39],
[40]. An MMF is a chunk of functionality that delivers a subset
of the customer’s requirements that is capable of returning value
to the customer when released as an independent entity. These
are then broken down into stories (new features) and then further
into tasks, which are just “to do” items.

A. Office Layout and Work Flow

Office layout is a key component. In the Toyota production
lines there are andon lights displaying the status of production
at any time; the same idea can be applied to software develop-
ment. Information radiators and kanban boards were placed all
around the work space to ensure that progress on a project was
completely transparent and available for all to see (see Fig. 2).
This enabled team members to be self-managing.

The strategic direction and prioritization of work was still
set by the Business and Project Boards, but the software team
now had a much clearer idea of their capacity and current WIP.
In the Digi-Hub project, two kanban boards (A,B) and four
information radiators (C,D,E,F) were used and positioned as
shown in the Fig. 2. The layout of the boards evolved as the
projects and staff understanding progressed.



MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 5

6l®

X e

Layout of kanban boards and information radiators.

B

Fig. 2.

It is important that work flows are kept as stable as possible.
This is because sudden peaks and troughs of work are disruptive
and will damage productivity. It is, therefore, necessary to try
and influence the upstream work flows as much as possible.
This information is captured on kanban board A: the ideation
pipeline (see Fig. 3).

Any ideas or potential work from customers were recorded
on a card and retained in proposed ideas’ in case they trigger
suggestions from the team. Any work, which is abandoned or
has its priority changed is also recorded. Once the ideas have
been clarified and broken down into small deliverable units, then
they are ready to be “pulled” to the next board when the team
has capacity to work on them. This kanban board B (see Fig. 4)
tracks the progress of MMFs, Stories, and Tasks.

If there are problems in development (Dev.), these will
quickly become apparent, as they will reach their WIP limit
and become a visible bottleneck.

B. Daily Standup

The daily stand-ups last for about 15 minutes, and normally
start at 10.15 A.M. each morning. They are carried out with all
team members standing in front of kanban board B, which tracks
the development phase (see Fig. 4). This is because this is where
the bulk of the work is carried out. The daily stand-up is vital
for the operation of the lean system. It is essential to facilitate
the identification and removal of blockages and bottlenecks, and
update the status and prioritization of work items.

The structure of the daily stand-up rhythm is given on infor-
mation radiator C (see Fig. 5). First, everyone checks to ensure
their work status is correctly displayed. Second, anyone who
is “blocked,” unable to progress due to something outside their
control reports this, and appropriate action is decided to remove
the obstruction. Third, any clusters of cards indicating a bot-
tleneck are noted and the people reorganize to alleviate this.
Finally, the work is reviewed to see if priorities have changed or
if the work flow can be improved. There is an expedite work flow
that can be used in exceptional circumstances to accommodate
urgent items or if there is a high-priority late change.

There is no need or time in a large team for an individual report
from each person. It is more effective to just flag problems to

be resolved. The kanban boards make it clear to all the team
the exact status of progress, blockages, bottlenecks and they
also signal possible future issues to prepare for. This shared
information enables the team to self-organize to ensure the work
flows smoothly. The different colored cards used are listed below
(see Fig. 5) and enable the exact status of all the team’s work to
be seen at any time.

No work was allowed to be carried out that was not recorded
on the boards otherwise the system would be undermined. A
typical “blocker” would be a slow or poor-quality delivery from
a customer or supplier that the team member could not resolve.
Another example would be a system that a developer had to
interface with, but was having trouble obtaining passwords or
technical data. Blockers could either be caused by a “special”
one off or a repeated problem. The team would then confirm
this was holding them back, explore alternative solutions, and
if necessary, request a line manager with greater seniority and
access to facilitate progress.

Information radiator D: Release notification and daily sup-
port process tasks board are used to ensure that any scheduled
releases or other operations that have to be carried out during
the week are visible. It acts as a reminder and check.

Information radiator E (Architecture, estimating, and break-
ing down projects): The board was used to record decisions on
the architecture for the software, initial estimates, and how the
work had been broken down into MMFs.

Information radiator F (Kaizen Board and Technical Debt):
The team vote on which items they wish to work on to reduce
technical debt or improve the lean system. Reducing techni-
cal debt involves work, such as improving poor legacy code or
making a modification that could increase future productivity.
Legacy software can be a severe constraint on current productiv-
ity. It is, therefore, necessary to explicitly reduce any technical
debt by allowing time for improvements to be made, even though
these are invisible to, and not requested by the customers.

VI. PERFORMANCE DATA ON THE LEAN SOFTWARE SYSTEMS

To evaluate the effectiveness of lean software management
over 12 months of operation, some of the data used by the
team are presented here. The team monitored the time taken for
work to flow through various parts of the value stream. They
also tracked quality and throughput measures using time-series
statistical process control charts [51]. These charts have two im-
portant elements. First, the horizontal upper control limit lines
show variance. The higher the line, the more variance, which
severely damages productivity, is in the process. Second, the av-
erage is shown as the lower horizontal line over time. Much data
used for management purposes are misleading unless presented
in this way due to the statistical noise of natural variation [52].

A. Lead Time

Lead time is the total elapsed time from when a customer
requests software to when the finished software is released to
the customer. It is measured because it tracks how quickly and
reliably software is delivered to customers. Lead Time is defined
as the number of working days the work takes measured from



IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Proposed Ideas Ready for Decomposed Released
decomposition Engineering Ready
Waste
On hold
Fig. 3. Kanban board A: ideation pipeline.
Goal | Objective | MMF | Engineering | Dev. | Dev. | Dev. QA Engineering | UAT | Release
Ready Ready Complete | Ready | Complete Ready
Work stream 1
Work stream 2
Work stream 3
Work stream 4
Expedite
Fig. 4. Kanban board B: (development phase).
Key Stand up Rhythm (Daily)
Data Card 1. Is the board correct?
Blocker = Purple 2. Blockers
Bug (in QA /UAT) =Pink 3. WIP / Bottlenecks
Fixed delivery = Small red (attached to card) 4. Work
Expedite = Small yellow (attached to card)
New Feature = Yellow
Live Defect = Red (bug found by customer, high priority)
Technical Story = Green
Something missed = White
Kaizen = Blue
Fig. 5. Information radiator C: kanban board and team performance indicators.

kanban board A: “decomposed engineering ready” (see Fig. 3)
to kanban board B: “release ready” (see Fig. 4).

The main work requests are new features, which are a sub-
set of an MMF. Other work would include technical features
and live defects. “Decomposed engineering ready” means the
customer has agreed to proceed and then the lead time clock
starts. The items are then created for the engineering-ready in-
put queue. Items are pulled into “engineering ready” only when
capacity becomes available. The lead time clock stops when
user acceptance testing (UAT) is complete and the items have
reached release ready.

A reliable process will have low variance; therefore, a key
objective is to continually reduce variance. Fig. 6 illustrates how
the top lines, upper control limits, continually decline meaning
that lead times are becoming more consistent and predictable.
To show trends, the periods on the charts have been split from
November 2008 to March 2009, April to June 2009, and July
to October 2009. The results show software is being delivered
with 47% less variance and on average 37% quicker.

B. Development Time

The Development Time measure gives insight into the effi-
ciency of development. This portion of the value stream was

directly under the team’s control and not subjected to delays
from upstream, downstream or third parties. It does not include
engineering ready, quality assurance (QA), or related queuing
times. Development time is recorded in working days, from
kanban board B stages: Dev. ready to Dev. complete. The work
units are either stories or tasks, which can be either standalone
or part of an MMF.

The nine months for which data were available are shown on
the statistical process control chart (see Fig. 7). The data has
been split from February to March 2009, April to June 2009,
and July to October 2009 to show trends. The declining upper
control limits show variation in delivery times has reduced by
78% from 30.5 to 6.8. The mean time to develop fewer and
smaller software features has declined by 73% from 9.2 to 2.5
working days.

C. Release Frequency Per Month

Release Frequency is defined as the number of items released
to customers. An upward trend would be expected, as projects
were broken into the smaller units and cycle time was reduced.
The chart in Fig. 8 shows the number of releases per month
increased by a factor of 8 from 2 in November 2007 to 16
in October 2009. There was a blanket release freeze on all



MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY

[Lesd Time

[
120+

Lead Time - Working Days

—g

=

—a

-
— ey

L i —
=

o
Py —
L]

| ==

o

—

L
.

| =t
—g

Apr2009 =T

=

Dec200s—* ™ [ *
Jan 2009 —

Feb 2009 —|

Mar2009— =

L

[ 1 L) -
LU )

May2009 — oo
Jun 2000 —
Aug 2009
Sep2009
Oct2009—

Nov 2008 - Oct 2009

Fig. 6. Lead time: variance and average.

Dev Time

50

45

40

354

30

25+

20

Dev Time - Working Days

—

.

[

———

—

) Hl. .

—
-—

et

‘ i

TAIJ\\
i

e

[
I

="

T Ep

wnn Ta =
FrTTTTTTT

rTTTTTTTTTTTTT TTTTTTT
a Iy

Feb 2009
Mar 200!
Apr 200
May 2009 —|

f
(o]

Fig. 7. Development time: variance and average.

releases in February 2009 to ensure complete priority was given
to the production of year-end financial data, hence the drop in
releases that month. The key issue of whether increased value
was delivered is discussed later in the Analysis section.

D. Live Defects Per Week

Live Defects are the bugs reported by customers during a
week plus the bugs still open. It is vital that the reductions in
lead and development times are not at the expense of quality.
Live defects are recorded on red kanban cards and added to
the Dev. (Development) stage of kanban board B. The chart in
Fig. 9 is split between October 2008 and June 2009 and July
and September 2009. The reduction in variation indicates bugs
were being fixed more quickly. The mean numbers of bugs open
each week also slightly declined.

E. Continuous Improvement Per Month

The daily stand-up is concerned to identify and remove any-
thing that is preventing progress. To do this, “blockers” are

Jun 2009 —

o

TTTTTT

FrTTTTTTTTTTTTT
-y

Jul 200
Aug 2009
Sep 2009 —
Oct 2009 —

- Oct 2009

actively identified, assigned, tracked, escalated, and removed.
This is a mechanism for making continuous improvement rou-
tine. Evidence of the effectiveness of this is shown in a statistical
process control chart (see Fig. 10). The periods on the chart have
been split from September 2008 to March 2009; April to June
2009, and from July to October 2009. The variance reduced
indicating that problems with the process were being resolved
more quickly. While the total number of problems identified
increased, the average number of days work was “blocked” fell

sharply.

VII. ANALYSIS

The underlying type and complexity of work did not change
significantly over the 12 months studied. The team and the
governance structure remained comparable. The engineering
practices were improved, but most were in place by October
2008, which was the start of the period studied. This was a
stable team with better tools whose skill levels increased during
the 12-month period studied. However, lean with its low WIP



IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

20
18
16
14
12
10
8 =t Count
6
4 4
2
0,
R R EEEEEEEREEREEERE-EEEEE R
QP QQRQIPQIQOO0LQ0QLQQQQ0QQQ QS
2 ¥ & O = = > € 5 @0 a3 2 E O & = > € 5 & QO
=] A e 2 O n = uot«:.—daw:qﬂ I~
zc " fsas2°5380za808sas3s353a0
Fig. 8. Release frequency per month.
9 Par Wosk
84
7 []
'éﬁ_. [}
35- 8 L]
=
g
& 47 [ L] L]
>
[+
3 - n n m n = [ [ B ]
24 [ ] [] [ ] - 1
1 ] [ ] [ ] [ ] [} . a [] [ ] [ []
A I I I O O
® 2 2 2 2 > o S S a ) >
8 8 & & g g & g g ] g g
s 2 5 s < 3 @
2 & 5 2 £ z g H 2 H & 8

Nov 2008 - Oct 2009

Fig. 9. Live defects per week: variance and average.

and “pull” approach meant that the size, complexity, and volume
of work input were all materially reduced.

An integral part of any lean manufacturing implementation is
a variability reduction effort, to enable a process to achieve the
same (or greater) throughput with less WIP. Little’s Law shows
that the way to make a process more productive is to ensure
the amount of WIP is not above the constraints of the system,
and to also focus on reducing cycle time. Little’s Law is a basic
manufacturing principle that states there is a fundamental long-
term relationship between throughput (output), WIP, and cycle
time of a production system in a steady state [32]

Throughput = WIP /cycletime.

Throughput is defined as average output; WIP is the inventory
between the start and finish points of a production process; cycle
time is the time a unit spends as WIP. This equation shows that
to drive productivity, cycle time must be continually reduced

while ensuring WIP does not exceed the capacity available to
process it.

Given the nature of software, the precise unit size and the
value of the output cannot be measured exactly, but Little’s
Law appears to be working. Using the kanban boards to only
“pull” work into the system when there was capacity to work
on it ensured WIP was always at the optimum level. Cycle time
was constantly improved by reducing variance through the daily
continual improvement activities and minimizing the size of the
units of work. The resulting rapid increase in the number of
these smaller deliverables can be seen in Fig 8.

The team believed greater value was being delivered for the
following reasons.

1) Only the work of highest value to customers was being

processed.

2) This work was being delivered and deployed quickly so

delivering value sooner.



MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 9

55 {Day: Blocked

200+

150+

Days Blocked

=]
g
1

50—

=% = d . - o =
°[IIIéllllél‘ll‘llllll&lIII;IIII\LI I;‘IFIIL‘L]II[‘JIIIIWI’II&III[&IIIICI“I
§ 3 4 3 2 2 z ) = 2 Ef b g

Sep 2008 - Oct 2009

Fig. 10. Continuous improvement: issues identified and time to resolve.

3) The risk of waste by working on misunderstood or incor-

rect requirements was minimized.

4) Customers were reported to be happier and prefer this

approach.

Software was produced more consistently with variability of
delivery of lead time reduced by 47% from 70.7 to 37.3 working
days over the year (see Fig. 6). This graph also shows that the
mean time to deliver software features was reduced by 37%
or 8.4 days from 22.8 to 14.4 working days. This means the
team was more able to respond to the needs of the business by
delivering new functionality faster and with more predictability.

The development time data shows even better improvement.
The variance of development time fell by 78% from 30.5 days to
6.8 days (see Fig. 7). The mean development time was reduced
73% from 9.2 to 2.5 working days over the nine months. The
bigger improvement in development time over lead time is felt
to be because this part of the process was purely under the team’s
control.

The release frequency chart (see Fig. 8) does not show how
much value is being delivered, but it does show an eight-fold
increase in releases from 2 in November 2007 to 16 in October
2009. This indicates an improvement in configuration manage-
ment discipline and capability. The more frequent releases re-
duce both technical and market risk by allowing customers to
evaluate tangible product rather than just progress reports.

The measure of bugs opened each week, which includes those
bugs not closed from previous weeks, showed improvement (see
Fig. 9). The number of bugs reported by customers was low;
therefore, data collected over a longer period of time would be
preferred to confirm the trends. Variance fell by 33% as the
upper control limit reduced from 7.6 to 5.1 open bugs per week.
Defects still open and reported each week fell by 24% from 2.9
to 2.2.

This data (see Fig. 9) indicates bugs were fewer and being
fixed more quickly, possibly due to the improving structure of
the code base. The necessity of allowing software developers
time to improve the quality of their code was mentioned by

the team, as a factor in the improved bug rates. As legacy is-
sues (technical stories) were resolved, the bug rate had fallen,
thus, allowing more customer stories to be completed. There-
fore, while the team was customer-focused and responsive to
customer needs, they needed to pay down any technical debt to
increase their productivity levels.

The data on continuous improvement (see Fig. 10) shows the
variance in time taken to resolve issues shortened significantly.
Over the 12 months, the mean number of working days items
were blocked was reduced by 81% from a mean of 25.8 days to
4.9 days per month. The outlier in 2008 was a result of waiting
for a third party to complete their work (a special cause). This
does illustrate that actively looking for and recording problems
increased the number of “blockers” raised, which is beneficial.
These were then being removed at a faster rate by the team.
This data was also used in retrospectives and quarterly reviews.
Reoccurring blockers were investigated and root-cause analysis
was performed.

Lean systems are typically rich in data, which could enable a
team to be self-organizing and initiate continual improvement.
However, as Adler and Cole identify data alone is not enough,
there must be “effort to constantly improve the details of the
production process” [53, p. 163]. By explicitly identifying and
removing “blockers” on a daily basis, the BBC Worldwide team
was constantly improving their processes.

It was not just data that was important, but the adoption of
a short work cycle, which meant that: . . .it is easy to identify
problems, define improvement opportunities, and implement
improved processes” [ibid, p.164]. By restricting the work-in-
progress and improving the speed of flow through their pro-
cesses, the context of a shorter cycle time enabled changes to be
made.

Finally, Adler and Cole point out that by using data to focus
on the progress of the work, rather than the performance of
individuals, . . .the knowledge required to make improvements
could be used . . . by the joint efforts of workers, managers, and
engineers to fuel a continuous improvement. ..” [ibid, p.168].



It is, therefore, not only the data generated that is important but
who is allowed to see and act on it. The software team studied
was all able to see and act on their data to improve their work
on a daily basis.

The main use of the kanban boards was to control the level of
work in process and enable bottlenecks to be quickly identified.
Customers rarely visited the kanban boards and did not attend
the daily stand-up meetings, as they both contained more detail
than customers needed and would be time-consuming. Also,
the team would be working for several customers; therefore,
much of the meeting would not be of interest. Customers were
encouraged to attend, but overall, it was not feasible for them to
be closely involved with the kanban boards.

Managers can see the status of projects on the kanban boards,
but this was not the boards’ primary function. Managers may ask
questions when the kanban board shows several red notes, denot-
ing live defects, or if excessive “waste” was being recorded, but
otherwise they would not be closely involved with the kanban
board. The regular meetings for the Steering Group or Project
Committee would not be held at the kanban boards.

The boards evolved with changes to layout being made
roughly on a weekly basis. They were a living tool reflecting
both the evolving projects and the peoples increasing under-
standing of their work. The social value of the daily standup
also cannot be underestimated. The requirement to daily share
the progress of your work with your peers was a powerful mo-
tivator and source of discipline.

The lean approach can handle big, complex projects. The
constraint is the ability of the human mind to handle complex-
ity. Therefore, any large project can be broken up into smaller
projects. A master kanban board can then be used to record and
summarize the progress of all the smaller projects. There is no
need or benefit from one gigantic kanban board recording ev-
erything. Scale or complexity of projects was not observed to
be a problem.

Lean requires a stable, experienced team with low staff
turnover and a project manager who knows the skills and abil-
ities of their team. Given the wide variance in the talents of
software developers and the people-intensive nature of software
development, this is vital. Lean is not a substitute for profes-
sional software engineering practice. Effective tools for source
control, bug tracking, testing, release, and deployment, were all
critical enablers of the lean software process.

Using short-cycle times and the kanban boards to reduce WIP
did accelerate the software development team’s learning. This
enabled a rapid rise in the maturity level of their development
process. The learning curve was increased by the effect of Lit-
tle’s Law [32], which facilitates learning by shorter cycle times
and the transparency resulting from reduced WIP.

One area that could possibly be improved is the “fuzzy front
end” [54] by adopting “front-end loading” [17]. This refers to
the time from when an idea is first discussed to when work
is started on it. The time taken to move on kanban board A
from “proposed ideas” to “decomposed engineering ready” is
currently not recorded, and this time could be significant. Lead
time could also potentially be further reduced, as customers
were batching work for user acceptance testing (UAT), which

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

was slowing the process before release ready. An investigation
of how to make UAT easier for customers could be beneficial.

The concept of a fixed “heart beat” of production or Takt time
used in lean manufacturing to ensure that the rate of production
meets the rate of demand was used by analogy. Small chunks of
work were continually released, but not in a precise, regimented
way. Takt time can work more literally to pace the operation in
repetitive service transactions, where the variation in the time
taken for each operation is relatively low. With software, each
unit of work is different as are the abilities of each software
engineer; therefore, unit development times can vary widely. It
would, therefore, be difficult to schedule software production
using Takt time [36].

The solution was the use of MMFs [39], which could vary
considerably in size and complexity. This created small defin-
able chunks of work that reduced work in process and increased
the frequency of releases allowing short-feedback loops. This
provided a rhythm to production and ensured a direct connec-
tion in small high-value deliverables with the customer. When
this is combined with the daily stand-ups, the work effort can
be directed and controlled as the customer requires.

The normal types of obstacle to organizational change were
observed. The tension with the existing standards and processes
is why lean is about culture change rather than simply imple-
menting tools. Specifically:

1) while capital costs were trivial, there is a need for consider-
able space to display the kanban and information boards.
Organizations with offices designed around a corporate
“look” may not welcome walls of post-it notes;

2) if the organization has a heavy plan driven process with
standardized corporate reporting on projects, then this
emergent approach will not fit easily. Lean handles risk by
being highly transparent, reducing WIP, breaking projects
into small parts, and frequent deliveries. Lean does not
work well with targets, milestones, Gantt charts and traf-
fic light reporting methods;

3) to truly deliver value to customers will require the devel-
opment team to proactively move upstream to work with
customers to define and analyze their problems and then
work downstream after release to see if business value was
actually created. Organizations may feel the IT teams are
going beyond their remit;

4) A self-managing team can be challenging as managers
need to move toward a facilitating role, which they may
feel uncomfortable with. Staff may not be used to being
encouraged to identify problems or having to multiskill.

VIII. AGILE VERSUS LEAN

The dearth of data in the Agile community generally is re-
markable. A major study seeking evidence to support Agile
reported “the strength of evidence is very low, which makes it
difficult to offer specific advice to industry” [55, p. 853]. This
BBC Worldwide case study may appear to record an Agile-
/Scrum-like approach, where care has been taken to collect data.
However, the lean approach described here does have significant
differences from Agile.



MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 11

A. Push Versus Pull

Scrum has time-boxed iterations or sprints with a fixed release
cadence [56]-[58]. It is, therefore, in essence still a push, batch
model. This lean software team lean used WIP limits to ensure a
team was not overloaded. Work was “pulled” in when the team
had capacity. The team did not sign up for arbitrary deadlines,
as support issues could occur that could blow things off course.
Arbitrary deadlines were avoided, as they tend to lead to game
playing and poor quality, as attempts are made to shoehorn work
into the reduced time [51].

B. Reliance On Data

Scrum has “inspect and adapt” in their retrospectives, which
is a trailing indicator [59]. The boards are not so important with
Scrum, because the focus is more on the people rather than the
work. The Scrum “stand-up” directs attention to the people and
what they did yesterday and what they are doing today [56].

In contrast, the lean team studied here enumerated the work,
not the people. In the lean approach adopted data was seen
primarily as a source of empowerment for the team, not as a
control tool for management. The team was expected to collect
and analyze their own data; so they could control and improve
their own work. This lean approach used the kanban boards
to expose problems and expected the team to take action. The
stand-ups used the kanban boards to provide leading indicators
of issues to be addressed. The lean team’s “standup” focused
on their work and what the team was going to release. The data
was used to help the team look up and down stream to enable
innovation.

C. Continual Improvement

Scrum uses “retrospectives” [60], [61], but benefits from these
are largely anecdotal and not quantifiable. The concept of “ve-
locity” measured as number of feature/story points delivered
per iteration is often used. However, there is a risk that velocity
estimates, number of features, or story points delivered are too
subjective and easy to manipulate. Agile teams do not put the
number of feature/story points delivered under statistical pro-
cess control. The power of this technique to identify trends and
variation in results is well established [51], [52].

In contrast, the lean team studies used “lead time,” which
is much harder to game, as it records total time from when a
customer requested the work to when the finished work was
received by the customer. They looked at “blockers” or imped-
iments as first-class items to be addressed on a daily basis, and
this drove their continual improvement activities. The lean team
actively sought out data they could use for self-management and
to make process improvement explicitly part of their routine.

D. Multiskilling/Collaboration

With Agile, the scrum master has the “impediment list” or
“improvement backlog” [59], [60], but the responsibility for
working on it can be diffuse. With this lean team because of
the WIP limits and the visibility due to the kanban boards, the
staff could not “cherry pick” what they would like to work on,

if they were blocked. They all had to help with the bottlenecks
and items blocking the work. The focus of the daily “stand-
ups” was on the flow of work and not on the individual reports
and performances. All staff members, regardless of their skill
profiles were expected to help eliminate the bottlenecks. The
objective was to deliver value as quickly as possible to the
customer.

IX. CONCLUSION

The research hypothesis was that the application of lean ideas
would improve the capability of a software development pro-
cess. This would be measured in terms of reductions in lead
time, error rates, and variability, combined with evidence of
continuous improvement. Considering all the quantitative and
qualitative data collected, the research hypothesis was supported
by this single case study.

The way the work was handled did change significantly. The
volume of work that was allowed to enter the process was sig-
nificantly reduced to ensure the workload was not beyond the
capacity of the system. The reduced cycle time meant the cus-
tomer quickly received high value, small incremental deliver-
ables. This reduced both technical and market risk.

Continuous improvement was carried out by the team on a
daily basis and this may well account for the increased pre-
dictability in delivery observed. Statistical process control was
seen to work well and provide useful data on trends and vari-
ance. Lean also provided a framework that encouraged other
beneficial improvements, such as rewriting parts of the legacy
code, developing team skills, and reducing staff turnover.

Actual business value delivered was largely influenced by the
areas selected to be worked on. These strategic priorities were
decided by the Business and Project Boards, not the software
team. However, it is likely that as the lean software develop-
ment process reduced risk, was faster, and more consistent, then
greater value was being delivered to the business.

ACKNOWLEDGMENT

The authors exceptionally value the contribution of Prof. Jef-
frey Liker and the anonymous reviewers in improving and de-
veloping this paper.

REFERENCES

[11 J. K. Liker, The Toyota Way: 14 Management Principles from the World’s

Greatest Manufacturer.  New York: McGraw-Hill, 2004.
[2] J. P. Womack and D. T. Jones, Lean Thinking.  London: Touchstone
Books, 1997.

[3] S. Shingo, A Study of the Toyota Production System.
Productivity Press, 1981.

[4] (2010). BBC Worldwide website
www.bbcworldwide.com/about-us.aspx.

[5] T. Ohno, Toyota Production System: Beyond Large-Scale Production.
Portland, Oregon: Productivity Press, 1988.

[6] J. P. Womack, D. T. Jones, and D. Roos, The Machine that Changed the
World. New York: Rawson Associates, 1990.

Portland, Oregon:

[Online]. Available:

[7]1 R. J. Schonberger, Japanese Manufacturing Techniques. ~ New York:
Free Press, 1982.
[8] M. Imai, Kaizen, the Key to Japan’s Competitive Success. ~New York:

McGraw-Hill, 1986.



12

[9]

[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]

[36]

M. Rother and J. Shook, Leaning to See: Value Stream Mapping to Add
Value and Eliminate Muda. ~ Cambridge, MA: The Lean Enterprise In-
stitute, 1999.

J. K. Liker and M. Hoseus, Toyota Culture: the Heart and Soul of the
Toyota Way. New York: McGraw-Hill, 2008.

J. K. Liker and Ed, Becoming Lean: Inside Stories of U. S. Manufacturers.
Portland, Oregon: Productivity Press, 1998.

J. Drew, B. McCallum, and S. Roggenhofer, Journey to Lean: Making
Operational Change Stick. — Basingstoke, U.K.: Palgrave MacMillan,
2004.

J. Allen, C. Robinson, and D. Stewart, Eds., Lean Manufacturing: A Plant
Floor Guide. Michigan: Society of Manufacturing Engineers, 2001.

G. Conner, Lean Manufacturing for the Small Shop.  Michigan: Society
of Manufacturing Engineers, 2001.

M. Baudin, Lean Assembly: The Nuts and Bolts of Making Assembly
Operations Flow.  New York: Productivity Press, 2002.

M. N. Kennedy, Product Development for the Lean Enterprise: Why Toy-
ota’s Systems is Four Times More Productive and How You Can Implement
it.  Virginia: Oaklea Press, 2003.

J. M. Morgan and J. K. Liker, The Toyota Product Development System:
Integrating People, Process and Technology. New York: Productivity
Press, 2006.

A. Ward, J. K. Liker, J. J. Cristiano, and D. K. SobeklIl, “The second
toyota paradox: How delaying decisions can make better cars faster,”
Sloan Manage. Rev., vol. 36, no. 3, pp. 43-61, 1995.

D. K. Sobek II, A. C. Ward, and J. K. Liker, “Toyota’s principles of
set-based concurrent engineering,” Sloan Manage. Rev., vol. 40, no. 2,
pp. 67-83, 1999.

D. Kirkpatrick, The Facebook Effect: The Inside Story of the Company
that is Connecting the World. ~ Chatham, England: Virgin Books, 2010.
R. Kaplinsky, Easternisation: The Spread of Japanese Management Tech-
niques to Developing Nations.  Ilford, U.K.: Frank Cass & Co., 1994.
P. Stewart, K. Murphy, A. Danford, T. Richardson, M. Richardson, and
V. Wass, We Sell Our Time no More: Workers’ Struggles Against Lean
Production in the British Car Industry. London, U.K.: Pluto Press,
20009.

E. Murman, T. Allen, K. Bozdogan, J. Cutcher-Gershenfeld, H. Mc-
Manus, D. Nightingale, E. Rebentisch, T. Shields, F. Stahl, M. Walton,
J. Warmkessel, S. Weiss, and S. Widnall, Lean Enterprise Value: Insight’s
from MIT’s Lean Aerospace Initiative. — Basingstoke, U.K.: Palgrave,
2002.

M. L. George, Lean Six Sigma for Service.
2003.

B. Price and D. Jaffe, The Best Service Is No Service.
CA: Jossey-Bass, 2008.

P. Middleton, “Just-in-time software development,” in Proc. 2nd Int. Conf.
Achieving Softw. Quality Softw., Consorzio Quality I.E.I.-CNR, Venice,
Italy, Oct. 18-20,1993, pp. 49-56.

J. Tierney, “Eradicating mistakes from your software process through
Poka Yoke,” in Proc. 6th Int. Softw. Quality Week, Softw. Res. Inst., San
Francisco, CA, 1993, pp. 300-307.

A. C. Hou, “Toward lean hardware/software system development: An
evaluation of selected complex electronic system development methodolo-
gies,” Lean Aircraft Initiative, Center for Technology, Policy and Industrial
Development, Massachusetts Inst. Technol., Cambridge, MA, Report—
Lean 95-01, 1995.

T. Morgan, “Lean manufacturing techniques applied to software devel-
opment,” M.Sc. thesis, Massachusetts Inst. Technol., Cambridge, MA,
1998.

T. Hamilton, “A lean software engineering system for the department of
defense,” M.Sc. thesis, Massachusetts Inst. Technol., Cambridge, MA,
1999.

T. Gilb, Principles of Software Engineering Management.
U.K.: Addison-Wesley, 1988.

W.J. Hopp and M. L. Spearman, Factory Physics.
Hill, 2001.

A. Cockburn, Agile Software Development.
Wesley, 2002.

M. B. Chrissis, M. Konrad, and S. Shrum, CMMI Guidelines for Process
Integration and Product Improvement.  Boston, MA: Addison-Wesley,
2004.

P.S. Adler, “The evolving object of software development,” Organisation,
vol. 12, no. 3, pp. 401-435, 2005.

P. Middleton, A. Flaxel, and A. Cookson, Lean Software Management
Case study: Timberline Inc..  Lecture Notes in Computer Science, New
York: Springer-Verlag, 2005.

New York: McGraw-Hill,

San Francisco,

‘Wokingham,
New York: McGraw-

Boston, MA: Addison-

[37]
[38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]
[54]

[55]

[56]
[57]

[58]

[59]
[60]

[61]

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

M. Poppendieck and T. Poppendieck, Lean Software Development: An
Agile Toolkit.  Boston, MA: Addison-Wesley, 2003.
P. Middleton and J. Sutton, Lean Software Strategies.
ductivity Press, 2005.

D. Anderson, Agile Management for Software Engineering —Applying
the Theory of Constraints for Business Results. ~ Englewood Cliffs, NJ:
Prentice-Hall, 2003.

C. Ladas, Scrumban: Essays on Kanban Systems for Lean Software De-
velopment.  Seattle, WA: Modus Cooperandi Press, 2008.

J. Seddon, Freedom from Command & Control. ~ Buckingham, U.K.:
Vanguard Education, 2005.

E. Willeke, D. Anderson, and E. Landes, Proceedings of Lean & Kanban
Software Conference, Miami, Bloomington, Indiana: Wordclay, 2009.

A. Shalloway, G. Beaver, and J. Trott, Lean-Agile Software Development:
Achieving Enterprise Agility.  Boston, MA: Pearson Education, 2010.
K. M. Eisenhardt and M. E. Graebner, “Theory building from cases:
Opportunities and challenges,” Acad. Manage. J., vol. 50, no. 1, pp. 25—
32, 2007.

A. D. Jankowicz, A.D. Business Research Projects.
Chapman & Hall, 1991.

G. Walsham, “The emergence of interpretivism in is research,” Inf. Syst.
Res., vol. 6, no. 4, pp. 376-394, 1995.

J. L. Wynekoop and N. L. Russo, “Studying system development method-
ologies: An examination of research results,” Inf. Syst. J., vol. 7, no. 1,
pp. 47-65, 1997.

C. B. Seaman, “Qualitative methods in empirical studies of software engi-
neering,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557-572, Jul./Aug.
1999.

S. Easterbrook, J. Singer, M. Storey, and D. Damian, “Selecting empir-
ical methods for software engineering research,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and J. Sjoberg, Eds.
London, U.K.: Springer-Verlag, 2008.

J. K. Liker and D. P. Meier, Toyota Talent: Developing Your People the
Toyota Way. New York: McGraw-Hill, 2007.

W. E. Deming, Out of the Crisis. ~ Cambridge, MA: MIT Press, 2000.
D. J. Wheeler, Understanding Variation: The Key to Managing Chaos.
Knoxville, TN: SPC Press, 1993.

P. S. Adler and R. E. Cole, “Designed for learning: A tale of two auto
plants,” Sloan Manage. Rev., vol. 34, no. 3, pp. 157-177, 1993.

P. G. Smith and D. G. Reinertsen, Developing Products in Half the Time.
New York: Wiley, 1998.

T. Dyba and T. Dingsoyr, “Empirical studies of agile software develop-
ment: a systematic review,” Inf. Softw. Technol., vol. 50, pp. 833-859,
2008.

K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Englewood Cliffs, NJ: Prentice-Hall, 2002.

B. Boehm and R. Turner, Balancing Agility and Discipline.
MA: Addison-Wesley, 2004.

T. Stober and U. Hansmann, Agile Software Development: Best Practices
for Large Software Development Projects.  Berlin, Germany: Springer-
Verlag, 2010.

M. Cohn, Succeeding With Agile: Software Development Using Scrum.
Boston, MA: Addison-Wesley, 2010.

K. Tate, Sustainable Software Development: An Agile Perspective.
Jersey: Addison-Wesley, 2006.

J. Shore and S. Warden, The Art of Agile Development.
O’Reilly, 2008.

New York: Pro-

London, U.K.:

Boston,

New

Sebastopol, CA:

Peter Middleton received the M.B.A. degree from
the University of Ulster, Northern Ireland, in 1987,
and the Ph.D. degree in software engineering from
Imperial College, London, U.K., in 1998.

He is currently a Senior Lecturer in computer sci-
ence at Queen’s University Belfast, Northern Ireland.
He is the coauthor of the book Lean Software Strate-
gies published in 2005, and the Editor of a book of
case studies on applied systems thinking: the Deliver-
ing Public Services that Work published in 2010. His
research interests include combining systems think-

ing with lean software development to help organizations significantly improve
their performance.



MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY

David Joyce is a Systems Thinker and Agile prac-
titioner with 20 years software development experi-
ence of which 12 years is technical team management
and coaching experience. In recent years, David has
led both onshore and offshore teams and success-
fully led an internet video start-up from inception to
launch. More recently David has coached teams on
Lean, Kanban and Systems Thinking at BBC World-
wide in the U.K. He is a Principal Consultant at
ThoughtWorks.

Mr. Joyce was awarded the Lean SSC Brickell
Key award for outstanding achievement and leadership.



pmiddleton
Note
Accepted for publication September 2010.  




