COMPARISON OF LEARNING
ALGORITHMS FOR HANDWRITTEN DIGIT
RECOGNITION

Y. LeCun, L. Jackel, L.. Bottou, A. Brunot, C. Cortes,
J. Denker, H. Drucker, [. Guyon, U. Miiller,
E. Sackinger, P. Simard, and V. Vapnik
Bell Laboratories, Holmdel, NJ 07733, USA

Email: yann@research.att.com

Abstract

This paper compares the performance of several classifier algorithms
on a standard database of handwritten digits. We consider not only raw
accuracy, but also rejection, training time, recognition time, and memory
requirements.

COMPARISON OF LEARNING ALGORITHMS FOR
HANDWRITTEN DIGIT RECOGNITION

Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes,
J. Denker, H. Drucker, I. Guyon, U. Miiller,
E. Sackinger, P. Simard, and V. Vapnik
Bell Laboratories, Holmdel, NJ 07733, USA
Email: yann@research.att.com

1 Introduction

The simultaneous availability of inexpensive powerful computers, powerful learn-
ing algorithms, and large databases, have caused rapid progress in handwriting
recognition in the last few years. This paper compares the relative merits of
several classification algorithms developed at Bell Laboratories and elsewhere
for the purpose of recognizing handwritten digits. While recognizing individual
digits is only one of many problems involved in designing a practical recognition
system, it is an excellent benchmark for comparing shape recognition methods.
Though many existing method combine a handcrafted feature extractor and a
trainable classifier, this study concentrates on adaptive methods that operate
directly on size-normalized images.

2 Database

The database used to train and test the systems described in this paper was
constructed from the NIST’s Special Database 3 and Special Database 1 con-
taining binary images of handwritten digits. Our training set was composed
of 30,000 patterns from SD-3, and 30,000 patterns from SD-1. Our test set
was composed of 5,000 patterns from SD-3 and 5,000 patterns from SD-1. The
60,000 pattern training set contained examples from approximately 250 writ-
ers. We made sure that the sets of writers of the training set and test set
were disjoint. All the images were size normalized to fit in a 20x20 pixel box
(while preserving the aspect ratio). For some experiments, the 20x20 images
were deslanted using moments of inertia before being presented. For other ex-
periments they were only centered in a larger input field using center of mass.
Grayscale pixel values were used to reduce the effects of aliasing. Two methods
(LeNet 1 and Tangent Distance) used subsampled versions of the images to 16
by 16 pixels.

3 The Classifiers

In this section we briefly describe the classifiers used in our study. For more
complete descriptions readers may consult the references.

Baseline Linear Classifier: Possibly the simplest classifier that one might
consider is a linear classifier. Each input pixel value contributes to a weighted
sum for each output unit. The output unit with the highest sum (including the
contribution of a bias constant) indicates the class of the input character. For
this experiment, we used deslanted 20x20 images. The network has 4010 free
parameters. The deficiencies of the linear classifier are well documented (Duda

& Hart 73) and it is included here simply to form a basis of comparison for more
sophisticated classifiers. The test error rate is 8.4%. Various combinations of
sigmoid units, linear units, gradient descent learning, and learning by directly
solving linear systems gave similar results.

Baseline Nearest Neighbor Classifier: Another simple classifier is a
K-nearest neighbor classifier with a Euclidean distance measure between input
images. This classifier has the advantage that no training time, and no brain
on the part of the designer, are required. However, the memory requirement
and recognition time are large: the complete 60,000 twenty by twenty pixel
training images (about 24 Megabytes at one byte per pixel, or 12 megabytes at 4
bits/pixel) must be available at run time. Much more compact representations
could be devised with modest increase in recognition time and error rate. As in
the previous case, deslanted 20x20 images were used. The test error for £ = 3 is
2.4%. Naturally, a realistic Euclidean distance nearest-neighbor system would
operate on feature vectors rather than directly on the pixels, but since all of
the other systems presented in this paper operate directly on the pixels, this
result is useful for a baseline comparison.

Pairwise Linear Classifier: A simple improvement of the basic linear
classifier was tested (Guyon et al. 89). The idea is to train each unit of a
single-layer network to classify one class from one other class. In our case this
layer comprises 45 units labelled 0/1, 0/2,...0/9, 1/2....8/9. Unit ¢/j is trained
to produce +1 on patterns of class 7, -1 on patterns of class j, and is not trained
on other patterns. The final score for class i is the sum of the outputs all the
units labelled /2 minus the sum of the output of all the units labelled y/i, for
all x and y. Error rate on the test set was 7.6%, only slightly better than a
linear classifier.

Principal Component Analysis and Polynomial Classifier: Follow-
ing (Schiirmann 78), a preprocessing stage was constructed which computes
the projection of the input pattern on the 40 principal components of the set of
training vectors. To compute the principal components, the mean of each input
component was first computed and subtracted from the training vectors. The
covariance matrix of the resulting vectors was then computed, and diagonalized
using Singular Value Decomposition. The 40-dimensional feature vector was
used as the input of a second degree polynomial classifier. This classifier can be
seen as a linear classifier with 821 inputs, preceded by a module that computes
all products of pairs of input variables. Error on the test set was 3.3%.

Radial Basis Function Network: Following (Lee 91), an RBF network
was constructed. The first layer was composed of 1,000 Gaussian RBF units
with 400 inputs (20x20), the second layer was a simple 1000-10 linear classi-
fier. The RBF units were divided into 10 groups of 100. Each group of units
was trained on all the training examples of one of the 10 classes using the
adaptive K-means algorithm. The second layer weights were computed using
a regularized pseudo-inverse method. Error rate on the test set was 3.6%

Large Fully Connected Multi-Layer Neural Network: Another clas-
sifier that we tested was a fully connected multi-layer neural network with two
layers of weights (one hidden layer). The network trained with various numbers
of hidden units. Deslanted 20x20 images were used as input. The best result
was 1.6% on the test set, obtained with a 400-300-10 network (approximately
123,300 weights). It remains somewhat of a mystery that networks with such
a large number of free parameters manage to achieve reasonably low testing
errors. We conjecture that the dynamics of gradient descent learning in multi-

INPUT feature maps feature maps feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 10@1x1

V
0,
I t,
gl

Figure 1: Architecture of LeNet 1. Each plane represents a feaure map, i.e. a
set of units whose weights are constrained to be identical. Input images are
sized to fit in a 16 x 16 pixel field, but enough blank pixels are added around
the border of this field to avoid edge effects in the convolution calculations.

layer nets has a “self-regularization” effect. Because the origin of weight space
is a saddle point that is attractive in almost every direction, the weights in-
variably shrink during the first few epochs (recent theoretical analysis seem to
confirm this (Sara Solla, personal communication)). Small weights cause the
sigmoids to operate in the quasi-linear region, making the network essentially
equivalent to a low-capacity, single-layer network. As the learning proceeds,
the weights grow, which progressively increases the effective capacity of the
network. A better theoretical understanding of these phenomena, and more
empirical evidence, are definitely needed.

LeNet 1: To solve the dilemma between small networks that cannot learn
the training set, and large networks that seem overparameterized, one can de-
sign specialized network architectures that are specifically designed to recognize
two-dimensional shapes such as digits, while eliminating irrelevant distortions
and variability. These considerations lead us to the idea of convolutional net-
work (LeCun et al. 90). In a convolutional net, each unit takes its input from
a local “receptive field” on the layer below, forcing it to extract a local fea-
ture. Furthermore, units located at different places on the image are grouped in
planes, called feature maps, within which units are constrained to share a sin-
gle set of weights. This makes the operation performed by a feature map shift
invariant, and equivalent to a convolution, followed by squashing functions.
This weight-sharing technique greatly reduces the number of free parameters.
A single layer is formed of multiple feature maps, extracting different features
types.

Complete networks are formed of multiple convolutional layers, extracting
features of increasing complexity and abstraction. Sensitivity to shifts and dis-
tortions can be reduced by using lower-resolution feature maps in the higher
layers. This is achieved by inserting subsampling layers between the convolu-
tion layers. It is important to stress that all the weights in such a network
are trained by gradient descent. Computing the gradient can be done with a
slightly modified version of the classical backpropagation procedure. The train-
ing process causes convolutional networks to automatically synthesize their own
features. One of our first convolutional network architecture, LeNet 1, shown
in Figure 3, was trained on the database. Because of LeNet 1’s small input
field, the images were down-sampled to 16x16 pixels and centered in the 28x28
input layer. Although about 100,000 multiply/add steps are required to eval-
uate LeNet 1, its convolutional nature keeps the number of free parameters

to only about 3000. The LeNet 1 architecture was developed using our own
version of the USPS database and its size was tuned to match the available
data. LeNet 1 achieved 1.7% test error.

LeNet 4: Experiments with LeNet 1 made it clear that a larger convolu-
tional network was needed to make optimal use of the large size of the training
set. LeNet 4 was designed to address this problem. It is an expanded ver-
sion of LeNet 1 that has a 32x32 input layer in which the 20x20 images (not
deslanted) were centered by center of mass. It includes more feature maps and
an additional layer of hidden units that is fully connected to both the last layer
of features maps and to the output units. LeNet 4 contains about 260,000
connections and has about 17,000 free parameters. Test error was 1.1%. In
previous experiments with ZIP code data, replacing the last layer of LeNet with
a more complex classifier improved the error rate. We replaced the last layer
of LeNet4 with a Euclidean Nearest Neighbor classifier, and with the “local
learning” method of Bottou and Vapnik, in which a local linear classifier is
retrained each time a new test pattern is shown. Neither of those improve the
raw error rate, although they did improve the rejection.

LeNet 5: LeNet 5, has an architecture similar to LeNet 4, but has more
feature maps, a larger fully-connected layer, and it uses a distributed repre-
sentation to encode the categories at the output layer, rather than the more
traditional “1 of N” code. LeNet 5 has a total of about 340,000 connections,
and 60,000 free parameters, most of them in the last two layers. Again the non-
deslanted 20x20 images centered by center of mass were used, but the training
procedure included a module that distorts the input images during training us-
ing small randomly picked affine transformations (shift, scaling, rotation, and
skewing). It achieved 0.9% error.

Boosted LeNet 4: Following theoretical work by R. Schapire, Drucker et
al. (Drucker et al 93) developed the “boosting” method for combining multiple
classifiers. Three LeNet 4 are combined: the first one is trained the usual way.
the second one is trained on patterns that are filtered by the first net so that
the second machine sees a mix of patterns, 50% of which the first net got right,
and 50% of which it got wrong. Finally, the third net is trained on new patterns
on which the first and the second nets disagree. During testing, the outputs of
the three nets are simply added. Because the error rate of LeNet 4 is very low,
it was necessary to artificially increase the number of training samples with
random distortions (like with LeNet 5) in order to get enough samples to train
the second and third nets. The test error rate was 0.7%, the best of any of our
classifiers. At first glance, boosting appears to be three times more expensive
as a single net. In fact, when the first net produces a high confidence answer,
the other nets are not called. The cost is about 1.75 times that of a single net.

Tangent Distance Classifier (TDC): The Tangent Distance classifier
(TDC) is a nearest-neighbor method where the distance function is made in-
sensitive to small distortions and translations of the input image (Simard et al.
93). If we consider an image as a point in a high dimensional pixel space (where
the dimensionality equals the number of pixels), then an evolving distortion of
a character traces out a curve in pixel space. Taken together, all these distor-
tions define a low-dimensional manifold in pixel space. For small distortions,
in the vicinity of the original image, this manifold can be approximated by a
plane, known as the tangent plane. An excellent measure of ”closeness” for
character images is the distance between their tangent planes, where the set of
distortions used to generate the planes includes translations, scaling, skewing,

400-10
pairwise
PCA+quadratic
1000 RBF
400-300-10
LeNet 1
LeNet 4
LeNet 4/ Local
LeNet 4 / K-NN
LeNet 5
Boosted LeNet 4
K-NN Euclidean
Tangent Distance
Soft Margin

Figure 2: error rate on the test set (%). The uncertainty in the quoted error
rates is about 0.1%.

squeezing, rotation, and line thickness variations. A test error rate of 1.1%
was achieved using 16x16 pixel images. Prefiltering techniques using simple
Euclidean distance at multiple resolutions allowed to reduce the number of
necessary Tangent Distance calculations. The figure for storage requirement
assumes that the patterns are represented at multiple resolutions at one byte
per pixel.

Optimal Margin Classifier (OMC): Polynomial classifiers are well-
studied methods for generating complex decision surfaces. Unfortunately, they
are impractical for high-dimensional problems, because the number of prod-
uct terms is prohibitive. A particularly interesting subset of decision surfaces
is the ones that correspond to hyperplanes that are at a maximum distance
from the convex hulls of the two classes in the high-dimensional space of the
product terms. Boser, Guyon, and Vapnik (Boser et al. 92) realized that any
polynomial of degree k in this “maximum margin” set can be computed by first
computing the dot product of the input image with a subset of the training
samples (called the “support vectors”), elevating the result to the k-th power,
and linearly combining the numbers thereby obtained. Finding the support
vectors and the coefficients amounts to solving a high-dimensional quadratic
minimization problem with linear inequality constraints. Using a version of the
procedure, known as Soft Margin Classifier (Cortes & Vapnik 95) that is well
suited for noisy problems, with a 4-th degree decision surface, a test error of
1.1% was reached. The number of support vectors obtained was around 25,000.

4 Discussion

A summary of the performance of our classifiers is shown in Figures 2 to 5.
Figure 2 shows the raw error rate of the classifiers on the 10,000 example test
set. Boosted LeNet 4 is clearly the best, achieving a score of 0.7%, closely
followed by LeNet 5 at 0.9%. This can be compared to our estimate of human
performance, 0.2%.

Figure 3 shows the number of patterns in the test set that must be rejected
to attain a 0.5% error. In many applications, rejection performance is more
significant than raw error rate. Again, Boosted LeNet 4 has the best score. The
enhanced versions LeNet 4 did better than the original LeNet 4, even though

400-300-10
LeNet 1
LeNet 4
LeNet 4/ Local
LeNet 4 / K-NN
Boosted LeNet 4
K-NN Euclidean
Tangent Distance
Soft Margin

Figure 3: Percent of test patterns rejected to achieve 0.5% error on the remain-
ing test examples for some of the systems.

400-10
pairwise
PCA+quadratic
1000 RBF
400-300-10
LeNet 1
LeNet 4
LeNet 4/ Local
LeNet 4 / K-NN
LeNet 5
Boosted LeNet 4
K-NN Euclidean

Tangent Distance

Soft Margin

0 500 1000 1500 2000

Figure 4: Time required on a Sparc 10 for recognition of a single character
starting with a size-normalized image (in milliseconds).

the raw accuracies were identical.

Figure 4 shows the time required on a Sparc 10 for each method to rec-
ognize a test pattern, starting with a size-normalized image. Expectedly,
memory-based method are much slower than neural networks. Single-board
hardware designed with LeNet in mind performs recognition at 1000 charac-
ters/sec (Sackinger & Graf 94). Cost-effective hardware implementations of
memory-based techniques are more elusive, due to their enormous memory
requirements.

Training time was also measured. K-nearest neighbors and TDC have es-
sentially zero training time. While the single-layer net, the pairwise net, and
PCA+quadratic net could be trained in less than an hour, the multilayer net
training times were expectedly much longer: 3 days for LeNet 1, 7 days for
the fully connected net, 2 weeks for LeNet 4 and 5, and about a month for
boosted LeNet 4. Training the Soft Margin classifier took about 10 days. How-
ever, while the training time is marginally relevant to the designer, it is totally
irrelevant to the customer.

Figure 5 shows the memory requirements of our various classifiers. Figures
are based on 4 bit per pixel representations of the prototypes for K-Nearest
Neighbors, 1 byte per pixel for Soft Margin, and Tangent Distance. They should
be taken as upper bounds, as clever compression of the data and/or elimination
of redundant training examples can reduce the memory requirements of some

400-10
pairwise
PCA+quadratic
1000 RBF
400-300-10
LeNet 1
LeNet 4
LeNet 4/ Local
LeNet 4 / K-NN
LeNet 5
Boosted LeNet 4
K-NN Euclidean
Tangent Distance
Soft Margin

0.6

Figure 5: Memory requirements for classification of test patterns (in MBytes).
Numbers are based on 4 bit/pixel for K-NN, 1 byte per pixel for Soft Margin,
and Tangent Distance, 4 byte per pixel for the rest.

of the methods. Memory requirements for the neural networks assume 4 bytes
per weight (and 4 bytes per prototype component for the LeNet 4 / memory-
based hybrids), but experlments show that one-byte weights can be used with
no significant change in error rate. Of the high-accuracy classifiers, LeNet 4
requires the least memory.

5 Conclusions

This paper is a snapshot of ongoing work. Although we expect continued
changes in all aspects of recognition technology, there are some conclusions
that are likely to remain valid for some time.

Performance depends on many factors including high accuracy, low run
time, and low memory requirements. As computer technology improves, larger-
capaaty recognizers become feasible. Larger recognizers in turn require larger
training sets. LeNet 1 was appropriate to the available technology five years
ago, just as LeNet 5 is appropriate now. Five years ago a recognizer as complex
as LeNet 5 would have required several months’ training, and more data than
was available, and was therefore not even considered.

For quite a long time, LeNet 1 was considered the state of the art. The
local learning classifier, the optimal margin classifier, and the tangent distance
classifier were developed to improve upon LeNet 1 — and they succeeded at
that. However, they in turn motivated a search for improved neural network
architectures. This search was guided in part by estimates of the capacity of
various learning machines, derived from measurements of the training and test
error as a function of the number of training examples. We discovered that
more capacity was needed. Through a series of experiments in architecture,
combined with an analysis of the characteristics of recognition errors, LeNet 4
and LeNet 5 were crafted.

We find that boosting gives a substantial improvement in accuracy, with a
relatively modest penalty in memory and computing expense. Also, distortion
models can be used to increase the effective size of a data set without actually
taking more data.

The optimal margin classifier has excellent accuracy, which is most remark-
able, because unlike the other high performance classifiers, it does not include a
priori knowledge about the problem. In fact, this classifier would do just as well
if the image pixels were permuted with a fixed mapping. It is still much slower
and memory hungry than the convolutional nets. However, improvements are
expected as the technique is relatively new.

Convolutional networks are particularly well suited for recognizing or re-
jecting shapes with widely varying size, position, and orientation, such as the
ones typically produced by heuristic segmenters in real-world string recognition
systems (see article by L. Jackel in these proceedings).

When plenty of data is available, many methods can attain respectable
accuracy. Although the neural-net methods require considerable training time,
trained networks run much faster and require much less space than memory-
based techniques. The neural nets’ advantage will become more striking as
training databases continue to increase in size.

References

B. E. Boser, I. Guyon, and V. N. Vapnik, A Training Algorithm for Opti-
mal Margin Classifiers, in Proceedings of the Fifth Annual Workshop on
Computational Learning Theory 5 144-152, Pittsburgh (1992).

L. Bottou and V. Vapnik, Local Learning Algorithms, Neural Computation 4,
888-900 (1992).

C. Cortes and V. Vapnik, The Soft Margin Classifier, Machine Learning, to
appear (1995).

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Chapter
4, John Wiley and Sons (1973).

H. Drucker, R. Schapire, and P. Simard, Boosting Performance in Neural Net-
works, International Journal of Pattern Recognition and Artificial Intelli-

gence 7 705-720 (1993).

I. Guyon, I. Poujaud, L. Personnaz, G. Dreyfus, J. Denker, and Y. LeCun,
Comparing Different Neural Net Architectures for Classifying Handwritten
Digits, in Proc. 1989 IJCNN II 127-132, Washington DC. IEEE, (1989).

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, R. Hubbard,
and L. D. Jackel, Handwritten digit recognition with a back-propagation
network, in D. Touretzky (ed), Advances in Neural Information Processing
Systems 2, Morgan Kaufman, (1990).

Yuchum Lee, Handwritten Digit Recognition using K-Nearest Neighbor, Radial-
Basis Functions, and Backpropagation Neural Networks, Neural Compu-
tation, 3, 3, (1991).

E. Sackinger and H.-P. Graf, A System for High-Speed Pattern Recognition and

Image Analysis, Proc of the fourth International Conference on Microelec-
tronics for Neural Networks and Fuzzy Systems, IEEE (1994).

J. Schirmann, A Multi=Font Word Recognition System for Postal Address
Reading, IEEE Trans., G27, 3 (1978).

P. Simard, Y. LeCun, and J Denker, Efficient Pattern Recognition Using a
New Transformation Distance, Neural Information Processing Systems 5,

50-58, Morgan Kaufmann (1993).

