
Lecture 16: String Matching
CLRS- 32.1, 32.4

Outline of this Lecture

� String Matching Problem and Terminology.

� Brute Force Algorithm.

� The Knuth-Morris-Pratt (KMP) Algorithm.

� The Boyer-Moore (BM) Algorithm.

1

String Matching Problem and Terminology

Given a text array
� ��� �������
	

and a pattern array� ��� ������� 	
such that the elements of

�
and

�
are

characters taken from alphabet
 . e.g.,
 � ����� ���
or
 � ��������� ����� ��� � .
The String Matching Problem is to find all the occur-
rence of

�
in

�
.

A pattern
�

occurs with shift � in
�

, if
� ��� ������� 	

=
� � � � ����� � � 	

. The String Matching Problem
is to find all values of � . Obviously, we must have
� ! � ! � " �

.

P

a a a

a

b c ...

c c

b

b

c cT

s=2

ab

2

String Matching Problem and Terminology

A string � is a prefix of � if � = � y, for some string
� .

Similarly, a string � is a suffix of � if � =y � , for
some string � .

3

Brute Force Algorithm

Initially,
�

is aligned with
�

at the first index position.�
is then compared with

�
from left-to-right. If a

mismatch occurs, ”slide”
�

to right by 1 position, and
start the comparison again.

c bac c ba

s=1
s=0

s=2
P

T ca a

bac bacbac

c c baa

4

Brute Force Algorithm

BF_StringMatcher(T, P) {
n = length(T);
m = length(P);

// s increments by 1 in each iteration
// => slide P to right by 1
for (s=0; s<=n-m; s++) {
// starts the comparison of P and T again
i=1; j=1;
while (j<=m && T[s+i]==P[j]) {
// corresponds to compare P and T from
// left-to-right
i++; j++;

}
if (j==m+1)
print "Pattern occurs with shift=", s

}
}

5

The Knuth-Morris-Pratt (KMP) Algorithm

In the Brute-Force algorithm, if a mismatch occurs at� ��� 	
(
� � �

), it only slides
�

to right by 1 step. It
throws away one piece of information that we’ve al-
ready known. What is that piece of information ?

Let � be the current shift value. Since it is a mismatch
at

� ��� 	
, we know

� � � � � � � � " � 	 � � ��� � ��� " � 	
.

P

T

.....

...

1 j

s+j−1

s

s+1

How can we make use of this information to make the
next shift? In general,

�
should slide by ��� � � such

that
� ��� � ��� 	

=
� � � � � � � � � � 	

. We then compare� ��� � 	
with

� � �	� � � 	
.

6

The Knuth-Morris-Pratt (KMP) Algorithm

When we slide
�

to right, it should be a place where�
could possibly occur in

�
.

q

a a bb a P[1..q]

P[1..k] is a suffix of P[1..q]

1 q

P

T

s

b a c

1

T b a c b a b ac b b

b a ac
s’

b

aba
1 k

a a bb a

aba
1 k

b

c

a ac b ba a bb a

b aaba a

P

7

Do not shift too much

Do not shift too much, as it may miss some matched
patterns!

aba

b a b a b a

a cb

b cb

P

T

bP

T

s

a

a

ba

ab b c

s’=s+2
b

s’=s+4
b aaba b c

It shifts too much! A matched pattern is missed.

a

a bb a ab b c

P

T

b a c

a a bb a

8

The next function

We need to answer the following question: Given
� ��� � ��� 	

match text characters
� � � � � � � � 	

, what is the
least shift � � � � such that

� ��� � � � 	
=
� � �	� � � � �	� � 	

,

where � � � � � �
?

In practice, the shift � � can be precomputed by com-
paring

�
against itself. Observe that

� � ���� � � � �	�� � 	
is a known text, and it is a suffix of

� ��� � ��� 	
. To find

the least shift � � � � , it is the same as finding the
largest

� � �
, s.t.,

� ��� � � � 	
is a suffix of

� ��� � ��� 	
.

9

The next function

Given
� ��� � � � 	

, let next be a function � � ��� � ����� � � � �

� ��� � � ����� � � " ���
such that

next(q) � � � � � � � � � �
and

� ��� � ��� 	
is a suffix of� ��� � ��� 	 �

.

87654321

babab ba

9

ac

q

P[q]

next(q) 065432100 1

10

a

Given next(q) for all
� ! � ! �

, we can use the KMP
algorithm.

10

The Knuth-Morris-Pratt (KMP) Algorithm

KMP_StringMatcher(T, P) {
n = length(T); m = length(P);
compute_Next(P);
q = 0; // number of characters matched

// so far
i=1;
while (i<=n) {
// loop until a match is found, or
// number of characters matched so far
// is 0; note ’i’ is unchanged.
while (q > 0 and P[q+1] != T[i]) {
q=next[q];

}
// matched character increased by 1
if (P[q+1]==T[i]) q=q+1;
if (q==m) {
print "Pattern occurs with shift=", i-m
q=next[q];

}
i++;
}
}

11

The Knuth-Morris-Pratt (KMP) Algorithm

3 4next(q)

P[q]

q

0

a a bb a b c

1

a b a

2

1 2 3 4 5 6 7

0 0 1

b

a b
i=8,q=0;

(exits the while loop)

i=3, q=03

P

T

P

P

P

i=8,q=3;p[q+1]!=T[i]

q assigns to next[1](=0)

q assigns to next[3](=1)

(in the while loop)

i=8,q=1;p[q+1]!=T[i]

(in the while loop)

b

a
8

1

1

5

3

1

q+1

q+1

q+1

q+1

k

a b a b a

a

a b a b a b c

i=8,q=5; p[q+1]!=T[i]

q assigns to next[5](=3)

(enters the while loop)a b a b a b c

12

How to compute next function

Given next[1], next[2], ..., next[q], how
can we compute next[q+1]?

1. If P[q+1]==P[next[q]+1],
then next[q+1]=next[q]+1.

.....

1
P

P

q1 q−next[q]+1

next[q]

13

How to compute next function

2. If P[q+1]!=P[next[q]+1], then do what?
�

should slide to a place such that
the prefix of

�
[1..next[q]] occurs as a suf-

fix of
�
[q-next[q+1]..q]; this information is

stored in next[next[q]] !

observe that P[1..next[q]]= P[q−next[q]+1..q]

next[next[q]]1

q−next[q]+11 q

P

P

next[q]

q−next[q]+11 q

P

P
1

.....

14

How to compute next function

We first set next[1]=0, then compute
���

�
� � � 	

with
� � � ��� � ������� , one by one in

� " �
iterations.

compute_Next(P) {
m = length(P);
next[1]=0; // initialization
k = 0; // number of characters matched

// so far
q=2;
while (q<=m) {
while (k > 0 and P[k+1] != P[q]) {
k = next[k];

}
if (P[k+1]==P[q]) k=k+1;
next[q]=k;

q++;
}
}

15

Running Time of the KMP Algorithm

1. compute Next

(a) � � " � � � at the beginning, and � ��" � ! � �
at all times.

(b) Note that after each comparison, � � " �
in-

creases at least by 1. But the value of � � " �

starts at � , and the largest possible value is
� � , it implies there are � � � �

number of com-
parisons.

(c) Hence, the running time of compute Next is
� � � �

.

16

Running Time of the KMP Algorithm

2. KMP StringMatcher

(a) ��� " � � � at the beginning, and ��� " � ! � �
at all times.

(b) Note that after each comparison, ��� " �
in-

creases at least by 1.

(c) Hence, the running time of KMP StringMatcher
is � � � � � � � � � � � � � �

.

17

The Boyer-Moore (BM) Algorithm

The Boyer-Moore (BM) algorithm slides
�

from left
to right; however it compares

�
and

�
from right to

left, i.e.,
� � � 	

will first compare with
� �
�
	

. If they
match, it then compares

� � � " � 	
with

� �
�
" � 	

, etc.
Else, it slides

�
to right, and compare

� � � 	
with

�
again.

18

The BM Algorithm : the bad-character heuristic

One insight of BM algorithm is that, if there is a mis-
match between

� � � 	
and

� �
�
	

, and
� �
�
	

does not
appear in

�
.
�

should be advanced by
�
.

tw___ i n ht e a

T

P

T

P

a

5

start comparison

s+5

... _e r ...

...

s

... _retw___ i n ht e

ived ec

ived ec

19

The BM Algorithm : the bad-character heuristic

If
� �
�
	

appears in
�

, shift
�

such that
� �
�
	

is aligned
with the rightmost occurrence of

� �
�
	

in
�

.

ived

start comparison

s+4

_tohsa _ w i d... ___ e ...

...

s

T

P

T

P e

ived ec

c

_tohsa _ w i d... ___ e

20

The BM Algorithm : the bad-character heuristic

If it happens the alignment of
�

and
�

gives a nega-
tive shift value, then just ignore it.

T

P

colsierG e c _... __ e ...T

P

s

negative shift

ived ec

colsierG e c _... __ e ...

ived ec

21

The BM Algorithm : the good suffix heuristic

Similar to the KMP algorithm, if the current shift is � ,
and it is a mismatch at

� ��� 	
, then we know

� � � � � � � 	
=
� � � � � � � � � 	

. Then we can shift�
by � � such that

�
is aligned with the rightmost

occurrence of
� ��� � � � � 	

.

1 m

s+ms+j+1

.....

s’

...T

P

j j+1 m

s+ms+j+1

.....

s

...T

P

22

The BM Algorithm

The BM Algorithm takes the larger shift amount com-
puted by bad-character heuristic and good-suffix heuris-
tic.

P

T _ ono h legit h e p_

t h e p_

eh o n y nom o

bad character heuristic

good suffix heuristic

s+3

s+6

start comparison

start comparison

i

eh o n y nom o

P

T _ ono h leg

P

T

s

...... _ o

eh o n y nom

no h l

o

bad character good suffix

egit h e p_

23

