Lecture 16: String Matching
CLRS-32.1,32.4

Outline of this Lecture

String Matching Problem and Terminology.

Brute Force Algorithm.

The Knuth-Morris-Pratt (KMP) Algorithm.

The Boyer-Moore (BM) Algorithm.

String Matching Problem and Terminology

Given a text array T'[1...n] and a pattern array
P[1...m] such that the elements of 7" and P are
characters taken from alphabet > . e.g.,, > = {0, 1}
or >~ = {a,b,...,z}.

The String Matching Problem is to find all the occur-
rence of P inT'.

A pattern P occurs with shift s in 7", if P[1...m]
=T[s+ 1...s5s+ m]. The String Matching Problem
Is to find all values of s. Obviously, we must have
0<s<n—m.

Tba|cabc|abca

s=2

String Matching Problem and Terminology

A string w Is a prefix of z if x =w Yy, for some string
Y.

Similarly, a string w is a suffix of x if z =yw , for
some string y.

Brute Force Algorithm

Initially, P is aligned with 7" at the first index position.
P is then compared with 7" from left-to-right. If a
mismatch occurs, "slide” P to right by 1 position, and
start the comparison again.

Tclalcab clajclalb caclalb

b S—:2>c|a|b

pl
O
jab)

Brute Force Algorithm

BF StringMatcher (T, P) {
n = length(T) ;
m = length(P) ;

// s increments by 1 in each iteration
// => slide P to right by 1
for (s=0; s<=n-m; s++) {
// starts the comparison of P and T again
i=1; j=1;
while (j<=m && T[s+i]==P[3J]) {
// corresponds to compare P and T from
// left-to-right
1++; J++;
}
if (j==m+1)
print "Pattern occurs with shift=", s

The Knuth-Morris-Pratt (KMP) Algorithm

In the Brute-Force algorithm, if a mismatch occurs at
P[j] (7 > 1), it only slides P to right by 1 step. It
throws away one piece of information that we’'ve al-
ready known. What is that piece of information ?

Let s be the current shift value. Since it is a mismatch
at P[j] ,weknowT[s+1..s+7j5—1] = P[1..5 —1].

s+1 s+j—1

..... %

How can we make use of this information to make the
next shift? In general, P should slide by s > s such
that P[1..k] = T[s’ +1.5 + k] . We then compare
Plk+ 1] with T[s + k + 1] .

The Knuth-Morris-Pratt (KMP) Algorithm

When we slide P to right, it should be a place where
P could possibly occur in 7.

Tbacbab|a|b|a|abcbab

P ~1 a b|a|b|a|ca
1 q
T bacbaba|b|aabcbab
P il >a|b|abaca
1 k
1 q

alb a|b|a P[1..q]

alblal| P1.k]isasuffix of P[1.q]
1 k

Do not shift too much

Do not shift too much, as it may miss some matched
patterns!

T alb alb albabc
P ° la|blalb aIblc
T ababalbabc

|
It shiftstoo much!| A matched pattern is missed.
|

albababc

s’=g+4

T
y

T abalbalbabc

s’/=g+2

P >a|b alb

QD
O
@

The next function

We need to answer the following question: Given P[1..q]
match text characters 7'[s + 1..s + ¢] , what is the
least shift s > s such that

P[l.k] =T[s + 1..s + k],
wheres’—l—kzs—l—q?

In practice, the shift s’ can be precomputed by com-
paring P against itself. Observe that T[s/—l— 1..sl—l—k]
IS a known text, and it is a suffix of P[1..q] . To find

the least shift s > s, it is the same as finding the
largest k < q, S.t.,

P[1..k] is a suffix of P[1..q] .

The next function

Given P[1..m], letnext beafunction{1,2,...,m} —
{0,1,...,m — 1} such that

next(q)= max{k : k < q and P[1..k] is a suffix of
P[1..4q]}.

Given next(q) for all 1 < g < m, we can use the KMP
algorithm.

10

The Knuth-Morris-Pratt (KMP) Algorithm

KMP_StringMatcher (T, P) {
n = length(T); m = length(P);
compute Next (P) ;
g = 0; // number of characters matched
// so far
1i=1;
while (i<=n) {
// loop until a match 1is found, or
// number of characters matched so far
// 1s 0; note ’'i’ 1s unchanged.
while (g > 0 and P[g+1l] != T[1i]) {
a=next [q] ;
}

// matched character increased by 1

if (P[g+1l]==TI[1]) g=g+1;

if (g==m) {

print "Pattern occurs with shift=", i-m
a=next [q] ;

}
1++;
}
}

11

The Knuth-Morris-Pratt (KMP) Algorithm

next (g)| 0 1 31410
1 3 8 i=3, g=0
T albjalb|alk
%7 i=8,qg=5; plg+l] !=T[1i]
P alblalblalblc (enters the while loop)
1 5 [q+1 g assigns to next[5] (=3)
P alblalblalbl|c| t78-a=3:platllt=TI[i]
(in the while loop)
1 3 |atl g assigns to next([3] (=1)

i=8,g=1;p[g+1] !=T[1i]

T
QO
O
QO
O
QO

(in the while loop)

1|g+l g assigns to next[1] (=0)
1=8,g=0;
P a b a b (exits the while loop)
g+l

12

How to compute next function

Given next [1], next[2], ..., nextl[qg]l, how
can we compute next [g+1]?

1. f P[g+1]==P[next[qg]+1],
then next [g+1] =next [g] +1.

1 g-next [g] +1 q

1 next [g]

13

How to compute next function

2. IfP[g+1] !'=P[next [g]+1], then do what?

P should slide to a place such that

the prefix of P [1..next[g]] occurs as a suf-
fix of P [g-next [g+1]..gl; this information is
stored In next [next [g]] !

1 g-next [g] +1 a
P
P
1 next [g]
observe that P[1l..next[g]]l= Pl[gnext[gl+l..q]
1 g-next [g] +1 a
P
P
1 next[next[gl]

14

How to compute next function

We first set next [1] =0, then compute next[q] with
qg=2,3,...m,o0nebyoneinm — 1 iterations.

compute Next (P) {
m = length (P);
next [1]=0; // initialization

k = 0; // number of characters matched

// so far
q=2;
while (g<=m) {
while (k > 0 and P[k+1] != P[gl) {

k = next[k];

}

if (P[k+1l]==P[qg]) k=k+1;
next [g] =k;

qg++;
}
}

15

Running Time of the KMP Algorithm

1. compute_Next

(a) 3¢g—k = 6 atthe beginning, and 3¢—k < 3m
at all times.

(b) Note that after each comparison, 3¢ — k in-
creases at least by 1. But the value of 3¢ — &
starts at 6, and the largest possible value is
3m, itimplies there are O(m) number of com-
parisons.

(c) Hence, the running time of compute Next IS
O(m).

16

Running Time of the KMP Algorithm

2. KMP_StringMatcher

(a) 31 — g = 3 at the beginning, and 37 — ¢ < 3n
at all times.

(b) Note that after each comparison, 3i — q in-
creases at least by 1.

(c) Hence, the running time of KMP_StringMatcher
ISO(n) 4+ O(m) = O(m + n).

17

The Boyer-Moore (BM) Algorithm

The Boyer-Moore (BM) algorithm slides P from left
to right; however it compares P and 7' from right to
left, i.e., P[m] will first compare with 7'[7] . If they
match, it then compares P[m — 1] with T'[i — 1] , etc.
Else, it slides P to right, and compare P[m] with T
again.

18

The BM Algorithm : the bad-character heuristic

One insight of BM algorithm is that, if there is a mis-
match between P[j] and T'[i] , and T'[7] does not
appear in P . P should be advanced by j.

T .. I | n thle wlaltl|e]|r

%

T - I | n tlhl|e wlalt]lelr

start comparison
|

s+5 : '
P > d|e|v|i|c|e

19

The BM Algorithm : the bad-character heuristic

If T'[7] appearsin P, shift P such that 7'[:] is aligned

with the rightmost occurrence of T'[i] in P .

T .. a W/ i d|e

%

p ——=d|e|v]|I cle

o

t

start comparison

s+4

|

|

|
e

20

The BM Algorithm : the bad-character heuristic

If it happens the alignment of 7" and P gives a nega-
tive shift value, then just ignore it.

T .. Greelcle S | |o|cC

%

p—>devi|c|e

T .. Glr|lelelc|e | | S | o] C

negative shift

21

The BM Algorithm : the good suffix heuristic

Similar to the KMP algorithm, if the current shift is s,
and it is a mismatch at P[j] , then we know P[5 +
1.m] =T[s+ 7+ 1..s + m] . Then we can shift
P by s such that T is aligned with the rightmost
occurrence of P[j + 1..m] .

s+j+1 s+m
T
o %
P >
j J+1 m
s+j+1 s+m
T
I
|
..... :
|
SI
P >
1 m

22

The BM Algorithm

The BM Algorithm takes the larger shift amount com-
puted by bad-character heuristic and good-suffix heuris-

tic.

bad character good suffix

T ... |t _|pli|gleloln|_|h|o]|l
< %
p —— nje|y|mjojoj|n
bad character heuristic
T ... |t _|pli|gleloln| _|h|o]|l
start comparison
s+3 I
P hio|n|e|ly[m|o|o]|n
good suffix heuristic
T ... |t _|pli|gleloln|_|h|ofl
startcomparisén
s+6 I
P hjofn|e|y/m|o|oO|n

23

