
Latent Factor Models

for Web Recommender Systems

Bee-Chung Chen
Deepak Agarwal, Pradheep Elango, Raghu Ramakrishnan

Yahoo! Research & Yahoo! Labs

2 Bee-Chung Chen (beechun@yahoo-inc.com)

Outline

• Overview of recommender problems at Yahoo!

• Basics of matrix factorization

• Matrix factorization + feature-based regression

• Matrix factorization + topic modeling

• Matrix factorization + fast online learning

• Research problems beyond factor models

– Explore/exploit (bandit problems)

– Offline evaluation

– Multi-objective optimization

– Whole-page optimization

3 Bee-Chung Chen (beechun@yahoo-inc.com)

Web Recommender Systems

Recommend items to users to maximize some objective(s)

4 Bee-Chung Chen (beechun@yahoo-inc.com)

Recommend search queries

Recommend applications Recommend news article

Recommend packages:
 Image

 Title, summary

 Links to other pages

Pick 4 out of a pool of K
 K = 20 ~ 50

 to maximize clicks

Routes traffic other pages

5 Bee-Chung Chen (beechun@yahoo-inc.com)

Web Recommender Systems

• Goal

– Recommend items to users to maximize some objective(s)

• A new scientific discipline that involves

– Machine Learning & Statistics (for learning user-item affinity)
• Offline Learning

• Online Learning

• Collaborative Filtering

• Explore/Exploit (bandit problems)

– Multi-Objective Optimization

• Click-rates (CTR), time-spent, revenue

– User Understanding

• User profile construction

– Content Understanding

• Topics, “aboutness”, entities, follow-up of something, breaking news,…

6 Bee-Chung Chen (beechun@yahoo-inc.com)

Recommend packages:
 Image

 Title, summary

 Links to other pages

Pick 4 out of a pool of K
 K = 20 ~ 50

 to maximize clicks

Routes traffic other pages

7 Bee-Chung Chen (beechun@yahoo-inc.com)

CTR Curves for Two Days on Yahoo! Front Page

Traffic obtained from a controlled randomized experiment (no confounding)

Things to note:

 (a) Short lifetimes, (b) temporal effects, (c) often breaking news stories

Each curve is the CTR of an item in the Today Module on www.yahoo.com over time

8 Bee-Chung Chen (beechun@yahoo-inc.com)

Problem Definition

item j with

User i

with

user features xi
(demographics,

browse history,

geo-location,

search history, …)

item features xj
(keywords, content categories, ...)

 (i, j) : response yij visits

Algorithm selects

(click/no-click)

Which item should we select?

• The one with highest predicted CTR

• The one most useful for improving

 the CTR prediction model

Exploit

Explore

9 Bee-Chung Chen (beechun@yahoo-inc.com)

Our Strategy

Most Popular

Recommendation

Personalized
Recommendation

Offline Learning

Collaborative filtering

profile construction
[KDD’09, WSDM’10]

Online Learning

Time-series models
[WWW’09]

 Online regression
[NIPS’08]

Intelligent Initialization

Prior estimation Prior estimation,
dimension reduction
[KDD’10]

Explore/Exploit

Multi-armed bandits
[ICDM’09]

Bandits with covariates
[Li, WWW’10]

10 Bee-Chung Chen (beechun@yahoo-inc.com)

Model Choices

• Feature-based (or content-based) approach
– Use features to predict response

• User features: Age, gender, geo-location, visit pattern, …

• Item features: Category, keywords, topics, entities, …

• Linear regression, Bayes Net, SVM, tree/forest methods,
mixture models, …

– Bottleneck: Need predictive features

• Difficult to capture signals at granular levels: Cannot distinguish
between users/items having same feature vectors

• Collaborative filtering (CF)
– Make recommendation based on past user-item interaction

• User-user, item-item, matrix factorization, …

• See [Adomavicius & Tuzhilin, TKDE, 2005], [Konstan, SIGMOD’08 Tutorial]

– Good performance for users and items with enough data

– Does not naturally handle new users and new items (cold-start)

11 Bee-Chung Chen (beechun@yahoo-inc.com)

Factorization Methods

• Matrix factorization

– Model each user/item as a vector of factors (learned from data)

jik jkikij vuvuy ~
NKKMNM

VUY


 ~

K << M, N

M = number of users

N = number of items



factor vector of user i factor vector of item j

rating that user i

gives item j

user i
ui’

item j
vj

item j

user i

Y U

V

12 Bee-Chung Chen (beechun@yahoo-inc.com)

Factorization Methods

• Matrix factorization

– Model each user/item as a vector of factors (learned from data)

– Better performance than similarity-based methods [Koren, 2009]

– No factor for new items/users, and expensive to rebuild the model!!

jik jkikij vuvuy ~
NKKMNM

VUY


 ~

K << M, N

M = number of users

N = number of items



factor vector of user i factor vector of item j

rating that user i

gives item j

• How to prevent overfitting

• How to handle cold-start

– Use features (given) to predict the factor values

13 Bee-Chung Chen (beechun@yahoo-inc.com)

How to Prevent Overfitting

• Loss minimization

• Probabilistic model













j j

i i

ji jiij

v

u

vuy

v

u

2

2

1

2

2

1

),(

2

2

1

||||

||||

)(

2

2

2







) ,0(~

) ,0(~

) ,(~

2

2

2

INv

INu

vuNy

vj

ui

jiij







),(vu

),(minarg , vuvu 

Given 2, u
2, v

2, find

]|,Pr[maxarg , yvuvu

equivalent

How to set 2, u
2, v

2 ?

14 Bee-Chung Chen (beechun@yahoo-inc.com)

Probabilistic Matrix Factorization

• Probabilistic model

) ,0(~

) ,0(~

) ,(~

2

2

2

INv

INu

vuNy

jj

ii

jiij























j vj

ui i

ji jiij

vu

Nrv

Mru

Rvuy

v

u

22

2

1

2

2

2

1

),(

22

2

1

222

log||||

log||||

log)(

constant)|,,Pr(log

),,(Let

2

2

2















vuy

vuvuyy dd)|,,Pr(maxarg)|Pr(maxarg   

 How to determine ?

–Maximum likelihood estimate

–Use the EM algorithm

15 Bee-Chung Chen (beechun@yahoo-inc.com)

Model Fitting: EM Algorithm

• Find

• Iterate between E-step and M-step until convergence

– Let be the current estimate

– E-step: Compute

• The expectation is not in closed form

• We draw Gibbs samples and compute the Monte Carlo mean

– M-step: Find

222

2

2

1

2

2

1

),(

2

2

1

logloglog

||||||||])[(222

vu

j ji iji jiij

NrMrR

vEuEvuyE
vu







 

)(maxargˆ)1(


 fn

)(ˆ n

vuvuyy dd)|,,Pr(maxarg)|Pr(maxargˆ   

)]|,,Pr([log)(
)ˆ,|,()(


vuy

yvu nEf

16 Bee-Chung Chen (beechun@yahoo-inc.com)

Example: timeSVD++

• Example of matrix factorization in practice

• Part of the winning method of Netflix contest [Koren 2009]

iktuikikki

tjjj

itiiii

jijitij

ututu

bbtb

btbtb

vtutbtby









)(dev)(

)(

)(dev)(

)()()(~

)(bin,

,







user bias

item popularity

user factors (preference)

distance to the middle rating time of i

middle

t

time bin

Model parameters: , bi, i, bit, bj, bjd, uik, ik, uikt,

 for all user i, item j, factor k, time t, time bin d

Subscript:

 user i,

 item j

 time t

17 Bee-Chung Chen (beechun@yahoo-inc.com)

How to Handle Cold Start?

• For new items and new users, their factor values are all 0

• Simple idea

– Predict their factor values based on features

• For new user i, predict ui based on xi (user feature vector)

– An item may be represented by a bag of words (later)

ui ~ G xi

G

xi : feature vector of user i

regression
weight matrix

18 Bee-Chung Chen (beechun@yahoo-inc.com)

RLFM: Regression-based Latent Factor Model

• Incorporate features into matrix factorization

– xi: feature vector of user i

– xj: feature vector of item j

• Probabilistic model

) ,(~

) ,(~

) ,(~

2

2

2

IDxNv

IGxNu

vuNy

vjj

uii

jiij







22

2

1

2

2

2

1

2

),(

2

2

1

222

log||||

log||||

log)(

constant)|,,Pr(log

),,,,(Let

2

2

2

vj jj

ui ii

ji jiij

vu

NrDxv

MrGxu

Rvuy

DG

v

u































vuy

vuvuyy dd)|,,Pr(maxarg)|Pr(maxargˆ   

Find

19 Bee-Chung Chen (beechun@yahoo-inc.com)

Comparison

• Zero-mean factorization

• Factorization with features (RLFM)

• Feature-only model

) ,0(~

) ,0(~

) ,(~

2

2

2

INv

INu

vuNy

vj

ui

jiij







) ,(~

) ,(~

) ,(~

2

2

2

IDxNv

IGxNu

vuNy

vjj

uii

jiij







) ,0(~ ,

) ,0(~ ,

) ,(~

2

2

2

INDxv

INGxu

GxDxDxGxNy

vjjjj

uiiii

jijijijiij













) ,(~ 2jiij DxGxNy 

20 Bee-Chung Chen (beechun@yahoo-inc.com)

Illustration

Factorization

without feature

Factorization

with features

Light

users

Light

users

Heavy

users

Heavy

users

21 Bee-Chung Chen (beechun@yahoo-inc.com)

Non-linear RLFM

jijiijij vuxby  )(~

• Bias of user i:),0(~ ,)(2


  Nxg iiii 

• Popularity of item j:),0(~ ,)(2


  Nxd jjjj 

• Factors of user i:),0(~ ,)(2INxGu u
u
i

u
iii 

• Factors of item j:),0(~ ,)(2INxDv v
v
i

v
iji 

b, g, d, G, D are regression functions

Any regression model can be used here!!

rating that user i

gives item j

xi = feature vector of user i

xj = feature vector of item j

xij = feature vector of (i, j)

22 Bee-Chung Chen (beechun@yahoo-inc.com)

fLDA: Factorization through LDA Topic Model

• An item is represented by a bag of word

• Model the rating yij that user i gives to item j as the user’s
affinity to the topics that the item has

– Unlike regular unsupervised LDA topic modeling, here the LDA
topics are learnt in a supervised manner based on past rating data

– These supervised topics are likely to be more useful for the
prediction purpose


k jkikij zsy ...

User i ’s affinity to topic k

Pr(item j has topic k) estimated by averaging

the LDA topic of each word in item j

The topic distribution zjk of a new item i is

predicted based on the bag of words in the item

23 Bee-Chung Chen (beechun@yahoo-inc.com)

Supervised Topic Assignment

   













ji jnij

jn

jkjn

k

jn

kl

jn

kzyfZ
WZ

Z

kz

 rated
)|(

)Rest|Pr(






Same as unsupervised LDA Likelihood of observed ratings

by users who rated item j when

zjn is set to topic k

Probability of observing yij

 given the model

The topic of the nth word in item j

24 Bee-Chung Chen (beechun@yahoo-inc.com)

Experimental Results (MovieLens)

• Task: Predict the rating that a user would give a movie

• Training/test split:

– Sort observations by time

– First 75%  Training data

– Last 25%  Test data

• User cold-start scenario

– 56% test data with new users

– 2% new items in test data

Model Test RMSE

RLFM 0.9363

fLDA 0.9381

Factor-Only 0.9422

FilterBot 0.9517

unsup-LDA 0.9520

MostPopular 0.9726

Feature-Only 1.0906

Constant 1.1190

25 Bee-Chung Chen (beechun@yahoo-inc.com)

Summary

• Factorization methods usually have better performance

than pure feature-based methods

– Netflix

– Our experience

• Metadata (feature vector or bag of words) can be easily

incorporated into matrix factorization

• Next step

– Matrix factorization with social networks

• Friendship: Address book

• Communication: Instant messages, emails

– Multi-application factorization

• E.g., joint factorization of the (user, news article) matrix and

the (user, query) matrix

26 Bee-Chung Chen (beechun@yahoo-inc.com)

Fast Online Learning for Time-sensitive Recommendation

• Examples of time-sensitive items

– News stories, trending queries, tweets, updates, events …

• Real-time data pipeline that continuously collects new

ratings (clicks) on new items

• Modeling requirements:

– Fast learning: Learn good models for new items using little data

• Good initial guess (without ratings on new items)

• Fast convergence

– Fast computation: Build good models using little time

• Efficient

• Scalable

• Parallelizable

27 Bee-Chung Chen (beechun@yahoo-inc.com)

• Feature-based model initialization

• Dimensionality reduction for fast model convergence

),(~ jj AxN

FOBFM: Fast Online Bilinear Factor Model

),(~ ,~ 
jjjiij Nuy Per-item

online model

),0(~

~





Nv

vuAxuy

j

jijiij

predicted by features



) ,0(~ 2IN

Bv

j

jj





Subscript:

 user i

 item j

Data:

 yij = rating that

 user i gives item j

 ui = offline factor vector

 of user i

 xj = feature vector

 of item j

B is a nk linear projection matrix (k << n)

project: high dim(vj)  low dim(j)

low-rank approx of Var[j]:

=

vj j B

) ,(~ 2 BBAxN jj




Offline training: Determine A, B, 
2

(once per day)

28 Bee-Chung Chen (beechun@yahoo-inc.com)

• Feature-based model initialization

• Dimensionality reduction for fast model convergence

• Fast, parallel online learning

• Online selection of dimensionality (k = dim(j))

– Maintain an ensemble of models, one for each candidate dimensionality

),(~ jj AxN

FOBFM: Fast Online Bilinear Factor Model

),(~ ,~ 
jjjiij Nuy Per-item

online model

),0(~

~





Nv

vuAxuy

j

jijiij

predicted by features



) ,0(~ 2IN

Bv

j

jj



 B is a nk linear projection matrix (k << n)

project: high dim(vj)  low dim(j)

low-rank approx of Var[j]:

jijiij BuAxuy )(~ 

offset new feature vector (low dimensional)

, where j is updated in an online manner

) ,(~ 2 BBAxN jj




Subscript:

 user i

 item j

Data:

 yij = rating that

 user i gives item j

 ui = offline factor vector

 of user i

 xj = feature vector

 of item j

29 Bee-Chung Chen (beechun@yahoo-inc.com)

Experimental Results: My Yahoo! Dataset (1)

• My Yahoo! is a personalized news reading site

– Users manually select news/RSS feeds

• ~12M “ratings” from ~3M users to ~13K articles

– Click = positive

– View without click = negative

30 Bee-Chung Chen (beechun@yahoo-inc.com)

Experimental Results: My Yahoo! Dataset (2)

• Item-based data split: Every item is new in the test data

– First 8K articles are in the training data (offline training)

– Remaining articles are in the test data (online prediction & learning)

• Our supervised dimensionality reduction (reduced rank regression)

significantly outperforms other methods

Methods:

• No-init: Standard online
regression with ~1000
parameters for each item

• Offline: Feature-based
model without online
update

• PCR, PCR+: Two
principal component
methods to estimate B

• FOBFM: Our fast online
method

31 Bee-Chung Chen (beechun@yahoo-inc.com)

Experimental Results: My Yahoo! Dataset (3)

• Small number of factors (low dimensionality) is better when the amount of data

for online leaning is small

• Large number of factors is better when the data for learning becomes large

• The online selection method usually selects the best dimensionality

factors =

 Number of

 parameters per

 item updated

 online

32 Bee-Chung Chen (beechun@yahoo-inc.com)

Experimental Results: MovieLens Dataset

• Training-test data split

– Time-split: First 75% ratings in training; rest in test

– Movie-split: 75% randomly selected movies in training; rest in test

Model RMSE
Time-split

RMSE
Movie-split

FOBFM 0.8429 0.8549

RLFM 0.9363 1.0858

Online-UU 1.0806 0.9453

Constant 1.1190 1.1162

FOBFM: Our fast online method

RLFM: [Agarwal 2009]

Online-UU: Online version of user-user

 collaborative filtering

Online-PLSI: [Das 2007]

ROC for Movie-split

33 Bee-Chung Chen (beechun@yahoo-inc.com)

Experimental Results: Yahoo! Front Page Dataset

• Training-test data split

– Time-split: First 75% ratings in training; rest in test

–~2M “ratings” from ~30K frequent

users to ~4K articles

•Click = positive

•View without click = negative

–Our fast learning method

outperforms others

34 Bee-Chung Chen (beechun@yahoo-inc.com)

Summary

• Recommending time-sensitive items is challenging

– Most collaborative filtering methods do not work well in cold start

– Rebuilding models can incur too much latency when the numbers

of items and users are large

• Our approach:

– Periodically rebuild the offline model that

• uses feature-based regression to predict the initial point for

online learning, and

• reduces the dimensionality of online learning

– Rapidly update online models once new data is received

• Fast learning: Low dimensional and easily parallelizable

• Online selection for the best dimensionality

35 Bee-Chung Chen (beechun@yahoo-inc.com)

Important Problems Beyond Factor Models

• How to explore/exploit with small traffic, a large item pool,

at a fine granularity

• Offline evaluation

• Multi-objective optimization under uncertainty

• Whole page optimization

36 Bee-Chung Chen (beechun@yahoo-inc.com)

Explore/Exploit

time

Show Item 1 with probability x1

 Item 2 x2

 …

 Item K xK

Determine (x1, x2, …, xK) based on clicks and views observed before t

in order to maximize the expected total number of clicks in the future

t –1 t –2 t

now

clicks in the future

• Large number of items

• Small traffic

• Deep personalization

Challenges

ICDM’09 (best paper)

• Small number of items

• No deep personalization

37 Bee-Chung Chen (beechun@yahoo-inc.com)

Offline Evaluation

• Ultimate evaluation: Online bucket test

• Unbiased offline evaluation based on random-bucket data

– [Lihong Li, WWW’10, WSDM’11]

– Random bucket: A small user population to which we show each

item with equal probability

– Assumptions:

• Single recommendation per visit (instead of top-K)

• All the users respond to the recommended item in an iid manner

– Replay-match methodology

• Challenges

– How to handle non-random data

– How to extend to top-K recommendation

– How to capture users’ “non-iid” behavior in a session

38 Bee-Chung Chen (beechun@yahoo-inc.com)

Multi-Objective Optimization

• Maximize time-spent (or revenue) s.t. click drop < 5%

Challenges:

• Deep personalization

• Optimization in the

 presence of uncertainty

39 Bee-Chung Chen (beechun@yahoo-inc.com)

Whole Page Optimization

Challenge:

How to jointly

optimize all

these modules
• Diversity

• Consistency

• Relatedness

Thank You!

Contact me for job/internship opportunities in Yahoo! Labs

beechun@yahoo-inc.com

