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Outline 

• Overview of recommender problems at Yahoo! 

• Basics of matrix factorization 

• Matrix factorization + feature-based regression 

• Matrix factorization + topic modeling 

• Matrix factorization + fast online learning 

• Research problems beyond factor models 

– Explore/exploit (bandit problems) 

– Offline evaluation 

– Multi-objective optimization 

– Whole-page optimization 
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Web Recommender Systems 

 

 

Recommend items to users to maximize some objective(s) 
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Recommend search queries 

Recommend applications Recommend news article 

Recommend packages: 
    Image 

    Title, summary 

    Links to other pages 

 

 

 

 

 

 

Pick 4 out of a pool of K 
    K = 20 ~ 50 

    to maximize clicks 

 

Routes traffic other pages 
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Web Recommender Systems 

• Goal 

– Recommend items to users to maximize some objective(s) 

• A new scientific discipline that involves 

– Machine Learning & Statistics (for learning user-item affinity) 
• Offline Learning 

• Online Learning 

• Collaborative Filtering 

• Explore/Exploit (bandit problems) 

– Multi-Objective Optimization 

• Click-rates (CTR), time-spent, revenue 

– User Understanding 

• User profile construction 

– Content Understanding 

• Topics, “aboutness”, entities, follow-up of something, breaking news,… 
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Recommend packages: 
    Image 

    Title, summary 

    Links to other pages 

 

Pick 4 out of a pool of K 
    K = 20 ~ 50 

    to maximize clicks 

 

Routes traffic other pages 
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CTR Curves for Two Days on Yahoo! Front Page 

Traffic obtained from a controlled randomized experiment (no confounding) 

Things to note: 

   (a) Short lifetimes, (b) temporal effects, (c) often breaking news stories 

Each curve is the CTR of an item in the Today Module on www.yahoo.com over time 
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Problem Definition 

item j with 

User i  

with 

user features xi 
(demographics, 

browse history, 

geo-location, 

search history, …) 

item features xj 
(keywords, content categories, ...) 

 

        (i, j) : response yij visits 

Algorithm selects 

(click/no-click) 

Which item should we select? 

• The one with highest predicted CTR 

• The one most useful for improving 

   the CTR prediction model 

Exploit 

Explore 
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Our Strategy 

Most Popular 

Recommendation 

Personalized 
Recommendation 

Offline Learning 

 

Collaborative filtering 

profile construction 
[KDD’09, WSDM’10] 

Online Learning 

 

Time-series models 
[WWW’09] 

 Online regression 
[NIPS’08] 

Intelligent Initialization 

 

Prior estimation Prior estimation, 
dimension reduction 
[KDD’10] 

Explore/Exploit 

 

Multi-armed bandits 
[ICDM’09] 

Bandits with covariates 
[Li, WWW’10] 
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Model Choices 

• Feature-based (or content-based) approach 
– Use features to predict response 

• User features: Age, gender, geo-location, visit pattern, … 

• Item features: Category, keywords, topics, entities, … 

• Linear regression, Bayes Net, SVM, tree/forest methods, 
mixture models, … 

– Bottleneck: Need predictive features 

• Difficult to capture signals at granular levels: Cannot distinguish 
between users/items having same feature vectors 

• Collaborative filtering (CF) 
– Make recommendation based on past user-item interaction 

• User-user, item-item, matrix factorization, … 

• See [Adomavicius & Tuzhilin, TKDE, 2005], [Konstan, SIGMOD’08 Tutorial] 

– Good performance for users and items with enough data 

– Does not naturally handle new users and new items (cold-start) 
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Factorization Methods 

• Matrix factorization 

– Model each user/item as a vector of factors (learned from data) 

 

jik jkikij vuvuy ~
NKKMNM

VUY


  ~

K << M, N 

M = number of users 

N = number of items 

 

factor vector of user i factor vector of item j 

rating that user i  

gives item j 

user i 
ui’ 

item j 
vj 

item j 

user i 

Y U 

V 
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Factorization Methods 

• Matrix factorization 

– Model each user/item as a vector of factors (learned from data) 

 

 
 

 

 

– Better performance than similarity-based methods [Koren, 2009] 

– No factor for new items/users, and expensive to rebuild the model!! 

 

jik jkikij vuvuy ~
NKKMNM

VUY


  ~

K << M, N 

M = number of users 

N = number of items 

 

factor vector of user i factor vector of item j 

rating that user i  

gives item j 

•  How to prevent overfitting 

•  How to handle cold-start 

–  Use features (given) to predict the factor values 
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How to Prevent Overfitting 

• Loss minimization 

 

 

 

 

 

• Probabilistic model 
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Probabilistic Matrix Factorization 

• Probabilistic model 
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 How to determine ? 

–Maximum likelihood estimate 

 

 

–Use the EM algorithm 
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Model Fitting: EM Algorithm 

• Find  

 

• Iterate between E-step and M-step until convergence 

– Let         be the current estimate 

– E-step: Compute 
 

 

 

 

• The expectation is not in closed form 

• We draw Gibbs samples and compute the Monte Carlo mean 

 

– M-step: Find 
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Example: timeSVD++ 

• Example of matrix factorization in practice 

• Part of the winning method of Netflix contest [Koren 2009] 

iktuikikki

tjjj

itiiii

jijitij

ututu

bbtb

btbtb

vtutbtby









)(dev )(

)(

)(dev )(

)()()(~

)(bin,

,







user bias 

item popularity 

user factors (preference) 

distance to the middle rating time of i 

middle 

t 

time bin 

Model parameters: , bi, i, bit, bj, bjd, uik, ik, uikt,  

                               for all user i, item j, factor k, time t, time bin d 

Subscript: 

  user i, 

  item j 

  time t 
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How to Handle Cold Start? 

• For new items and new users, their factor values are all 0 

• Simple idea 

– Predict their factor values based on features 

• For new user i, predict ui based on xi (user feature vector) 

 

 

 

 

 

 

 

 

– An item may be represented by a bag of words (later) 

ui       ~       G xi 

G 

xi : feature vector of user i 

regression 
weight matrix 
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RLFM: Regression-based Latent Factor Model 

• Incorporate features into matrix factorization 

– xi: feature vector of user i 

– xj: feature vector of item j  

• Probabilistic model 
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Comparison 

• Zero-mean factorization 

 
 

 

• Factorization with features (RLFM) 

 

 

 

• Feature-only model 
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Illustration 

Factorization 

without feature 

Factorization 

with features 

Light 

users 

Light 

users 

Heavy 

users 

Heavy 

users 
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Non-linear RLFM 

jijiijij vuxby  )(~

• Bias of user i: ),0(~    ,)( 2


  Nxg iiii 

• Popularity of item j: ),0(~    ,)( 2


  Nxd jjjj 

• Factors of user i: ),0(~    ,)( 2INxGu u
u
i

u
iii 

• Factors of item j: ),0(~    ,)( 2INxDv v
v
i

v
iji 

b, g, d, G, D are regression functions 

Any regression model can be used here!! 

rating that user i 

gives item j 

xi  = feature vector of user i 

xj  = feature vector of item j 

xij  = feature vector of (i, j) 



22 Bee-Chung Chen   (beechun@yahoo-inc.com)     

fLDA: Factorization through LDA Topic Model 

• An item is represented by a bag of word 

• Model the rating yij that user i gives to item j as the user’s 
affinity to the topics that the item has 

 
 

 

 

 

 

 

 

– Unlike regular unsupervised LDA topic modeling, here the LDA 
topics are learnt in a supervised manner based on past rating data 

– These supervised topics are likely to be more useful for the 
prediction purpose 


k jkikij zsy ...

User i ’s affinity to topic k 

Pr(item j has topic k)  estimated by averaging 

the LDA topic of each word in item j 

The topic distribution zjk of a new item i is  

predicted based on the bag of words in the item 
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Supervised Topic Assignment 
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Same as unsupervised LDA Likelihood of observed ratings 

by users who rated item j when 

zjn is set to topic k 

Probability of observing yij  

        given the model 

The topic of the nth word in item j 
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Experimental Results (MovieLens) 

• Task: Predict the rating that a user would give a movie 

• Training/test split: 

– Sort observations by time 

– First 75%  Training data 

– Last 25%  Test data 

• User cold-start scenario 

– 56% test data with new users 

– 2% new items in test data 

 

Model Test RMSE 

RLFM 0.9363 

fLDA 0.9381 

Factor-Only 0.9422 

FilterBot 0.9517 

unsup-LDA 0.9520 

MostPopular 0.9726 

Feature-Only 1.0906 

Constant 1.1190 



25 Bee-Chung Chen   (beechun@yahoo-inc.com)     

Summary 

• Factorization methods usually have better performance 

than pure feature-based methods 

– Netflix 

– Our experience 

• Metadata (feature vector or bag of words) can be easily 

incorporated into matrix factorization 

• Next step 

– Matrix factorization with social networks 

• Friendship: Address book 

• Communication: Instant messages, emails 

– Multi-application factorization 

• E.g., joint factorization of the (user, news article) matrix and   

the (user, query) matrix 
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Fast Online Learning for Time-sensitive Recommendation 

• Examples of time-sensitive items 

– News stories, trending queries, tweets, updates, events … 

• Real-time data pipeline that continuously collects new 

ratings (clicks) on new items 

• Modeling requirements: 

– Fast learning: Learn good models for new items using little data 

• Good initial guess (without ratings on new items) 

• Fast convergence 

– Fast computation: Build good models using little time 

• Efficient 

• Scalable 

• Parallelizable 
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• Feature-based model initialization 

 

 

 

• Dimensionality reduction for fast model convergence 

 

 

 

),(~ jj AxN

FOBFM: Fast Online Bilinear Factor Model 

),(~      ,~ 
jjjiij Nuy Per-item  

online model 
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predicted by features 
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)  ,0(~ 2IN
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jj
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

Subscript: 

   user i 

   item j 

Data: 

   yij = rating that 

          user i gives item  j 

   ui  = offline factor vector 

          of user i 

   xj  = feature vector 

          of item j 

B is a nk linear projection matrix (k << n) 

project: high dim(vj)  low dim(j) 

low-rank approx of Var[j]: 

= 

vj j B 

)  ,(~ 2 BBAxN jj




Offline training: Determine A, B, 
2 

(once per day) 
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• Feature-based model initialization 

 

 

 

• Dimensionality reduction for fast model convergence 

 

 

 

• Fast, parallel online learning 

 

 
 

• Online selection of dimensionality (k = dim(j)) 

– Maintain an ensemble of models, one for each candidate dimensionality 

),(~ jj AxN

FOBFM: Fast Online Bilinear Factor Model 
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 B is a nk linear projection matrix (k << n) 

project: high dim(vj)  low dim(j) 

low-rank approx of Var[j]: 

jijiij BuAxuy )(~ 

offset new feature vector (low dimensional) 

,   where j is updated in an online manner 
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



Subscript: 

   user i 

   item j 

Data: 

   yij = rating that 

          user i gives item  j 

   ui  = offline factor vector 

          of user i 

   xj  = feature vector 

          of item j 
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Experimental Results: My Yahoo! Dataset (1) 

• My Yahoo! is a personalized news reading site 

– Users manually select news/RSS feeds 

• ~12M “ratings” from ~3M users to ~13K articles 

– Click = positive 

– View without click = negative 
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Experimental Results: My Yahoo! Dataset (2) 

 

• Item-based data split: Every item is new in the test data 

– First 8K articles are in the training data (offline training) 

– Remaining articles are in the test data (online prediction & learning) 

• Our supervised dimensionality reduction (reduced rank regression) 

significantly outperforms other methods 

Methods: 

• No-init: Standard online 
regression with ~1000 
parameters for each item 

• Offline: Feature-based 
model without online 
update 

• PCR, PCR+: Two 
principal component 
methods to estimate B 

• FOBFM: Our fast online 
method 
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Experimental Results: My Yahoo! Dataset (3) 

• Small number of factors (low dimensionality) is better when the amount of data 

for online leaning is small 

• Large number of factors is better when the data for learning becomes large 

• The online selection method usually selects the best dimensionality 

# factors =  

   Number of 

   parameters per 

   item updated 

   online 
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Experimental Results: MovieLens Dataset 

• Training-test data split 

– Time-split: First 75% ratings in training; rest in test 

– Movie-split: 75% randomly selected movies in training; rest in test 

Model RMSE 
Time-split 

RMSE 
Movie-split 

FOBFM 0.8429 0.8549 

RLFM 0.9363 1.0858 

Online-UU 1.0806 0.9453 

Constant 1.1190 1.1162 

FOBFM: Our fast online method 

RLFM: [Agarwal 2009] 

Online-UU: Online version of user-user  

           collaborative filtering 

Online-PLSI: [Das 2007] 

ROC for Movie-split 
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Experimental Results: Yahoo! Front Page Dataset 

• Training-test data split 

– Time-split: First 75% ratings in training; rest in test 

–~2M “ratings” from ~30K frequent 

users to ~4K articles 

•Click = positive 

•View without click = negative 

–Our fast learning method 

outperforms others 
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Summary 

• Recommending time-sensitive items is challenging 

– Most collaborative filtering methods do not work well in cold start 

– Rebuilding models can incur too much latency when the numbers 

of items and users are large 

• Our approach: 

– Periodically rebuild the offline model that 

• uses feature-based regression to predict the initial point for 

online learning, and 

• reduces the dimensionality of online learning 

– Rapidly update online models once new data is received 

• Fast learning: Low dimensional and easily parallelizable 

• Online selection for the best dimensionality 
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Important Problems Beyond Factor Models 

• How to explore/exploit with small traffic, a large item pool, 

at a fine granularity  

• Offline evaluation 

• Multi-objective optimization under uncertainty 

• Whole page optimization 
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Explore/Exploit 

time 

Show Item 1 with probability x1 

          Item 2                          x2 

          … 

          Item K                          xK 

Determine (x1, x2, …, xK) based on clicks and views observed before t 

in order to maximize the expected total number of clicks in the future 

t –1  t –2  t 

now 

clicks in the future 

• Large number of items 

• Small traffic 

• Deep personalization 

Challenges 

ICDM’09 (best paper) 

• Small number of items 

• No deep personalization 
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Offline Evaluation 

• Ultimate evaluation: Online bucket test 

• Unbiased offline evaluation based on random-bucket data 

– [Lihong Li, WWW’10, WSDM’11] 

– Random bucket: A small user population to which we show each 

item with equal probability 

– Assumptions: 

• Single recommendation per visit (instead of top-K) 

• All the users respond to the recommended item in an iid manner 

– Replay-match methodology 

• Challenges 

– How to handle non-random data 

– How to extend to top-K recommendation 

– How to capture users’ “non-iid” behavior in a session 



38 Bee-Chung Chen   (beechun@yahoo-inc.com)     

Multi-Objective Optimization 

• Maximize time-spent (or revenue) s.t. click drop < 5% 

Challenges: 

•  Deep personalization 

•  Optimization in the 

    presence of uncertainty   
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Whole Page Optimization 

Challenge: 

How to jointly 

optimize all 

these modules 
•  Diversity 

•  Consistency 

•  Relatedness 



Thank You! 

Contact me for job/internship opportunities in Yahoo! Labs  

beechun@yahoo-inc.com 


