LRU缓存介绍与实现 (Java)

引子:

我们平时总会有一个电话本记录所有朋友的电话,但是,如果有朋友经常联系,那些朋友的电话号码不用翻电话本我们也能记住,但是,如果长时间没有联系了,要再次联系那位朋友的时候,我们又不得不求助电话本,但是,通过电话本查找还是很费时间的。但是,我们大脑能够记住的东西是一定的,我们只能记住自己最熟悉的,而长时间不熟悉的自然就忘记了。

其实,计算机也用到了同样的一个概念,我们用缓存来存放以前读取的数据,而不是直接丢掉,这样,再次读取的时候,可以直接在缓存里面取,而不用再重新查找一遍,这样系统的反应能力会有很大提高。但是,当我们读取的个数特别大的时候,我们不可能把所有已经读取的数据都放在缓存里,毕竟内存大小是一定的,我们一般把最近常读取的放在缓存里(相当于我们把最近联系的朋友的姓名和电话放在大脑里一样)。现在,我们就来研究这样一种缓存机制。

LRU缓存:

LRU缓存利用了这样的一种思想。LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU缓存把最近最少使用的数据移除,让给最新读取的数据。而往往最常读取的,也是读取次数最多的,所以,利用LRU缓存,我们能够提高系统的performance.

实现:

要实现LRU缓存,我们首先要用到一个类 LinkedHashMap。 用这个类有两大好处:一是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最最不常读取的会放在最后(当然,它也可以实现按照插入顺序存储)。第二,LinkedHashMap本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这是,LinkedHashMap相当于一个linkedlist),所以,我们需要override这样一个方法,使得当缓存里存放的数据个数超过规定个数后,就把最不常用的移除掉。LinkedHashMap的API写得很清楚,推荐大家可以先读一下。

要基于LinkedHashMap来实现LRU缓存,我们可以选择inheritance, 也可以选择 delegation, 我更喜欢delegation。基于delegation的实现已经有人写出来了,而且写得很漂亮,我就不班门弄斧了。代码如下:

import java.util.LinkedHashMap;
import java.util.Collection;
import java.util.Map;
import java.util.ArrayList;

/**
* An LRU cache, based on <code&g
  • 9
    点赞
  • 99
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
Java实现LRU缓存淘汰算法的方法与Python类似,也可以使用哈希表和双向链表来实现。下面是一个Java实现LRU缓存淘汰算法的代码示例: ```java class LRUCache { private Map<Integer, Node> map; private int capacity; private Node head; private Node tail; public LRUCache(int capacity) { this.capacity = capacity; map = new HashMap<>(); head = new Node(0, 0); tail = new Node(0, 0); head.next = tail; tail.prev = head; } public int get(int key) { if (map.containsKey(key)) { Node node = map.get(key); remove(node); add(node); return node.value; } else { return -1; } } public void put(int key, int value) { if (map.containsKey(key)) { Node node = map.get(key); node.value = value; remove(node); add(node); } else { if (map.size() == capacity) { Node node = tail.prev; remove(node); map.remove(node.key); } Node node = new Node(key, value); map.put(key, node); add(node); } } private void add(Node node) { Node next = head.next; head.next = node; node.prev = head; node.next = next; next.prev = node; } private void remove(Node node) { Node prev = node.prev; Node next = node.next; prev.next = next; next.prev = prev; } private class Node { int key; int value; Node prev; Node next; public Node(int key, int value) { this.key = key; this.value = value; } } } ``` 在这个实现中,我们同样使用了一个哈希表来查询节点是否存在以及快速删除节点,使用一个双向链表来维护缓存中节点的顺序。当有新的节点被访问时,我们将其移到链表头部,并且当缓存空间不足时,我们淘汰链表尾部的节点。同时,我们使用了一个Node内部类来封装节点的key和value,以及前驱和后继节点的指针。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值