| 注册
请输入搜索内容

热门搜索

Java Linux MySQL PHP JavaScript Hibernate jQuery Nginx
bpqhxxybpr
7年前发布

Python并发编程之进程

   <h2>一、理论概念</h2>    <p>1、定义</p>    <p>进程(Process 也可以称为重量级进程)是程序的一次执行。在每个进程中都有自己的地址空间、内存、数据栈以及记录运行的辅助数据,它是系统进行资源分配和调度的一个独立单位。</p>    <p>2、并行和并发</p>    <p>并行:并行是指多个任务同一时间执行;</p>    <p>并发:是指在资源有限的情况下,两个任务相互交替着使用资源;</p>    <p><img src="https://simg.open-open.com/show/472bda4be9d32fd169b349c7b22332dd.png" alt="Python并发编程之进程" width="536" height="420"></p>    <p>3、同步和异常</p>    <p>同步是指多个任务在执行时有一个先后的顺序,必须是一个任务执行完成另外一个任务才能执行;</p>    <p>异步是指多个任务在执行时没有先后顺序,多个任务可以同时执行;</p>    <p>4、同步/异步/阻塞/非阻塞/</p>    <p>同步阻塞:这个阻塞的形成效率是最低的;比如你在下载一个东西是,你一直盯着下载进度条,到达100%时下载完成;</p>    <p>同步体现在:你等待下载完成通知;</p>    <p>阻塞体现在:等待下载的过程中,不能做别的事情</p>    <p>同步非阻塞:你在下载东西时,你把任务提交后就去干别的事情了,只是每过一段时间就看一下是不是下载完成;</p>    <p>同步体现在:等待下载完成通知;</p>    <p>非阻塞提现在:等待下载完成通知过程中,去干别的事情了,只是时不时会瞄一眼进度条;</p>    <p>异步阻塞:你在下载东西时换了一个现在使用的客户端比如迅雷,下载完成后会有一个提示音,但是这时候你仍然一直在等待那个完成后的提示音;</p>    <p>异步体现在:下载完成时有提示音;</p>    <p>阻塞体现在:等待下载完成提示音时,不做任何事情;</p>    <p>异步非阻塞:你然然使用的是迅雷下载软件,这时候你把下载任务提交后就去干别的事情去了,当你听到‘叮’以后就知道下载完成;</p>    <p>异步体现在:下载完成叮一声完成通知</p>    <p>非阻塞体现在:等待下载完成“叮”一声通知过程中,去干别的任务了,只需要接收“叮”声通知即可;</p>    <h2>二、进程的创建与结束</h2>    <p>multiprocessing模块:multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。</p>    <p>Process模块的各种方法介绍</p>    <pre>  <code class="language-python">Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)    强调:  1. 需要使用关键字的方式来指定参数  2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号    参数介绍:  group参数未使用,值始终为None  target表示调用对象,即子进程要执行的任务  args表示调用对象的位置参数元组,args=(1,2,'egon',)  kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}  name为子进程的名称  p.start():启动进程,并调用该子进程中的p.run()   p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法    p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁  p.is_alive():如果p仍然运行,返回True  p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程  </code></pre>    <p>在windows中使用process注意事项:</p>    <p>在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候 ,就不会递归运行了。</p>    <p>process模块创建进程:</p>    <pre>  <code class="language-python">#!/usr/bin/env python  # -*- coding:utf-8 -*-   #Author: caoyf  import  time  from multiprocessing import  Process  def func(name):      print('hello %s'%name)      print('我是子进程')    if __name__ == '__main__':      p = Process(target=func,args=('caoyf',))  #在实例化时候,args的参数必须是一个元祖形式(注册一个子进程)      p.start() #启动一个子进程      time.sleep(3)      print('执行主进程内容了')    创建第一个进程</code></pre>    <p>多个进程同时运行,子进程的执行顺序不是根据启动的顺序来决定的;</p>    <pre>  <code class="language-python">#!/usr/bin/env python  # -*- coding:utf-8 -*-  #Author: caoyf  import  time  from multiprocessing import  Process  def func(name):      print('hello %s'%name)      time.sleep(2)    if __name__ == '__main__':      p_lst =  []      for i in range(10):          p = Process(target=func, args=('caoyf',))          p.start()          p_lst.append(p)      for p in p_lst: p.join()  # 是感知一个子进程的结束,将异步的程序改为同步      print('父进程在运行')    多个进程同时运行</code></pre>    <p>另一种开启进程的方法,继承process的形式</p>    <pre>  <code class="language-python">#!/usr/bin/env python  # -*- coding:utf-8 -*-  #Author: caoyf  import  time  import os  from multiprocessing import  Process  class Func(Process):      def __init__(self,name):          super().__init__()          self.name = name      def run(self):          print(os.getpid())          print('%s正在和小明聊天'%self.name)    if __name__ == '__main__':      p1 = Func('caoyf')      p2 = Func('Zhao')      p1.start()      p2.start()      p1.join()      p2.join()    继承的方式开启进程</code></pre>    <p>守护进程:会随着主进程的结束而结束,进程之间是相互独立的,主进程的代码运行结束,守护进程也会随即结束</p>    <pre>  <code class="language-python">#!/usr/bin/env python  # -*- coding:utf-8 -*-  #Author: caoyf  import  time  import os  from multiprocessing import  Process  def foo():      print('start123')      time.sleep(2)      print('end123')    def func():      print('start456')      time.sleep(5)      print('end456')  if __name__ == '__main__':      p1 = Process(target=foo)      p2 = Process(target=func)      p1.daemon = True      p1.start()      p2.start()      time.sleep(0.1)      print('main------------')#打印该行则主进程代码结束,则守护进程p1应该被终止.#可能会有p1任务执行的打印信息123,因为主进程打印main---      # -时,p1也执行了,但是随即被终止.    守护进程</code></pre>    <h2>三、进程同步(multiprocessing.Lock\Spemaphore\Event)</h2>    <p>锁(Lock):</p>    <p>资源是有限的,多个进程如果对同一个对象进行操作,则有可能造成资源的争用,甚至导致死锁,在并发进程中就可以利用锁进行操作来避免访问的冲突;</p>    <p>加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,但是速度就变慢了,但牺牲了速度却保证了数据安全。</p>    <p>虽然可以用文件共享数据实现进程间通信,但问题是:</p>    <p>1.效率低(共享数据基于文件,而文件是硬盘上的数据)</p>    <pre>  <code class="language-python">                        2.需要自己加锁处理  </code></pre>    <p>我们可以模拟一个火车抢票的过程,当过个客户同时对一个程序发起访问时,假设此时有5张票,有10个人抢</p>    <pre>  <code class="language-python">from multiprocessing import Process,Lock  import time,json,random  def search():      dic=json.load(open('db'))      print('\033[43m剩余票数%s\033[0m' %dic['count'])    def get():      dic=json.load(open('db'))      time.sleep(random.random()) #模拟读数据的网络延迟      if dic['count'] >0:          dic['count']-=1          time.sleep(random.random()) #模拟写数据的网络延迟          json.dump(dic,open('db','w'))          print('\033[32m购票成功\033[0m')      else:          print('\033[31m购票失败\033[0m')    def task(lock):      search()      lock.acquire()      get()      lock.release()    if __name__ == '__main__':      lock = Lock()      for i in range(100): #模拟并发100个客户端抢票          p=Process(target=task,args=(lock,))          p.start()    抢火车票</code></pre>    <p>信号量:</p>    <p>信号量Semaphore是同时允许一定数量的线程更改数据 。</p>    <pre>  <code class="language-python">#!/usr/bin/env python  # -*- coding:utf-8 -*-   #Author: caoyf  import  time  import  random  from multiprocessing import Semaphore  from multiprocessing import Process  def f(i,a):      a.acquire()      print('%s走进了房间'%i)      time.sleep(random.randint(1,5))      print('%s走出了房间'%i)      a.release()  if __name__ == '__main__':      a = Semaphore(5)      for i in range(10):          p = Process(target=f,args=(i,a))          p.start()    信号量</code></pre>    <p>事件:</p>    <pre>  <code class="language-python">用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。        事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。                                                  clear:将“Flag”设置为False                                                  set:将“Flag”设置为True</code></pre>    <pre>  <code class="language-python">#!/usr/bin/env python  # -*- coding:utf-8 -*-   #Author: caoyf  from multiprocessing import Event,Process  import random  import time  def cars(a,i):      if not a.is_set():          print('car%s在等待'%i)          a.wait()      print('\033[31mcar%s通过\033[0m' % i)  def f(a):      while True:          if a.is_set():              a.clear()              print('\033[31m红灯亮了\033[0m')            else:              a.set()              print('\033[32m绿灯亮了\033[0m')          time.sleep(2)  if __name__ == '__main__':      a = Event()      p = Process(target=f,args=(a,))      p.start()      for i in range(20):          car = Process(target=cars,args=(a,i))          car.start()          time.sleep(random.random())    事件/红绿灯实例</code></pre>    <h2>四、进程间通信---队列和管道</h2>    <p>队列Queue:适用于多线程编程的先进先出数据结构,可以用来安全的传递多线程信息。</p>    <p>通过队列实现了 主进程与子进程的通信 子进程与子进程之间的通信</p>    <pre>  <code class="language-python">q=Queue(10)     #实例化一个对象,允许队列对多10个元素  q.put()         #放入队列  q.get()         #从队列中取出  </code></pre>    <p>假设现在有一个队伍,队伍里最多只能站5个人,但是有15个人想要进去</p>    <pre>  <code class="language-python">#!/usr/bin/env python  # -*- coding:utf-8 -*-   #Author: caoyf  from multiprocessing import Process  from multiprocessing import Queue  def getin(q):     #进入队伍的子进程      for i in range(15):          q.put(i)          # print(q)  def getout(q):    #离开队伍的子进程      for i in range(6):          print(q.get())  if __name__=='__main__':      q=Queue(5)      #队伍内最多可以容纳的人数      p=Process(target=getin,args=(q,))     #进入队伍的进程      p.start()      p2=Process(target=getout,args=(q,))   #离开队伍的进程      p2.start()    队列实例</code></pre>    <p>管道(Pipes)</p>    <pre>  <code class="language-python">#!/usr/bin/env python  # -*- coding:utf-8 -*-   #Author: caoyf  from multiprocessing import Process,Pipe,Manager,Lock  import time  import  random  # 管道 进程之间创建的一条管道,默认是全双工模式,两头都可以进和出,  # 注意 必须在产生Process对象之前产生管道  # 如果在Pipe括号里面填写False后就变成了单双工,  # 左边的只能收,右边的只能发,recv(接收),send(发送)  #如果没有消息可以接收,recv会一直阻塞,如果连接的另外一段关闭后,  #recv会抛出EOFError错误  # close 关闭连接  #下面的实例是在Pipe的括号里填写和不填写False的区别  # from multiprocessing import Process,Pipe  # def func(pro):  #     pro.send('hello')  #     pro.close()  #  # if __name__=='__main__':  #     con,pro =  Pipe(False)  #     p = Process(target=func,args=(pro,))  #     p.start()  #     print(con.recv())  #     p.join()  # 模拟recv阻塞情况  # def func(con,pro):  #     con.close()  #     while 1:  #         try:  #             print(pro.recv())  #         except EOFError:  #             pro.close()  #             break  #  #  # if __name__=='__main__':  #     con,pro =  Pipe()  #     p = Process(target=func,args=(con,pro,))  #     p.start()  #     pro.close()  #     con.send('aaaaa')  #     con.close()  #     p.join()    # 利用管道实现生产者和消费者  # def sc(con,pro,name,food):  #     con.close()  #     for i in range(5):  #         time.sleep(random.random())  #         f = '%s生产了%s%s'%(name,food,i)  #         print(f)  #         pro.send(f)  # def xf(con,pro,name):  #     pro.close()  #     while 1:  #         try:  #             baozi = con.recv()  #             print('%s消费了%s'%(name,baozi))  #         except EOFError:  #             break  # if __name__=='__main__':  #     con,pro = Pipe()  #     p1 = Process(target=sc,args=(con,pro,'caoyf','包子'))  #     c1 = Process(target=xf,args=(con,pro,'zhoaf'))  #     p1.start()  #     c1.start()  #     con.close()  #     pro.close()  #     p1.join()    管道</code></pre>    <p>数据共享:</p>    <p>队列和管道只是实现了数据的传递,还没有实现数据的共享,如实现数据共享,就要用到Managers( <em>注:进程间通信应该尽量避免使用共享数据的方式</em> <em>)</em></p>    <pre>  <code class="language-python">from multiprocessing import Process,Manager  import os    def f(dict1,list1):      dict1[os.getpid()] = os.getpid()            # 往字典里放当前PID      list1.append(os.getpid())                   # 往列表里放当前PID      print(list1)    if __name__ == "__main__":      with Manager() as manager:          d = manager.dict()                       #生成一个字典,可在多个进程间共享和传递          l = manager.list(range(5))               #生成一个列表,可在多个进程间共享和传递          p_list = []                                        for i in range(10):              p = Process(target=f,args=(d,l))              p.start()              p_list.append(p)                     # 存进程列表                 for res in p_list:                                  res.join()          print('\n%s' %d)                                        #若要保证数据安全,需要加锁lock=Lock()     </code></pre>    <p>进程池</p>    <p>对于需要使用几个甚至十几个进程时,我们使用Process还是比较方便的,但是如果要成百上千个进程,用Process显然太笨了,multiprocessing提供了Pool类,即现在要讲的进程池,能够将众多进程放在一起,设置一个运行进程上限,每次只运行设置的进程数,等有进程结束,再添加新的进程</p>    <ul>     <li>Pool(processes =num):设置运行进程数,当一个进程运行完,会添加新的进程进去</li>     <li>apply_async:异步,串行</li>     <li>apply:同步,并行</li>     <li>close():关闭pool,不能再添加新的任务</li>    </ul>    <pre>  <code class="language-python">import os  import time  import random  from multiprocessing import Pool  from multiprocessing import Process  def func(i):      i += 1    if __name__ == '__main__':      p = Pool(5)          # 创建了5个进程      start = time.time()      p.map(func,range(1000))        p.close()                        # 是不允许再向进程池中添加任务      p.join()                        #阻塞等待 执行进程池中的所有任务直到执行结束      print(time.time() - start)      start = time.time()      l = []      for i in range(1000):          p = Process(target=func,args=(i,))  # 创建了一百个进程          p.start()          l.append(p)      [i.join() for i in l]      print(time.time() - start)    回调函数:        import os  import time  from multiprocessing import Pool  # 参数 概念 回调函数  def func(i):    # 多进程中的io多,分出去一部分      print('子进程%s:%s'%(i,os.getpid()))      return i*'*'    def call(arg):   # 回调函数是在主进程中完成的,不能传参数,只能接受多进程中函数的返回值      print('回调 :',os.getpid())      print(arg)    if __name__ == '__main__':      print('主进程',os.getpid())      p = Pool(5)      for i in range(10):          p.apply_async(func,args=(i,),callback=call)  #callback 回调函数 :主进程执行 参数是子进程执行的函数的返回值      p.close()      p.join()    </code></pre>    <p>来自:http://www.cnblogs.com/caoyf1992/p/8687352.html?utm_source=tuicool&utm_medium=referral</p>    
 本文由用户 bpqhxxybpr 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
 转载本站原创文章,请注明出处,并保留原始链接、图片水印。
 本站是一个以用户分享为主的开源技术平台,欢迎各类分享!
 本文地址:https://www.open-open.com/lib/view/open1522593845876.html
Python 并发 Python开发