Android的延迟实现的几种解决方案以及原理分析
<p>写这篇文章的目的,是看到群里有人在实现延迟的时候,用如下的第四种方法,个人感觉有点不妥,为了防止更多的人有这种想法,所以自己抽空深入分析,就分析的结果,写下此文,希望对部分人有启示作用。</p> <h2>1.实现延迟的几种方法?</h2> <p>答:</p> <p>1.java.util.Timer类的:</p> <pre> <code class="language-java">public void schedule(TimerTask task, long delay) { if (delay < 0) throw new IllegalArgumentException("Negative delay."); sched(task, System.currentTimeMillis()+delay, 0); }</code></pre> <p>2.android.os.Handler类:</p> <pre> <code class="language-java">public final boolean postDelayed(Runnable r, long delayMillis) { return sendMessageDelayed(getPostMessage(r), delayMillis); }</code></pre> <p>3.android.app.AlarmManager类:</p> <pre> <code class="language-java">@SystemApi @RequiresPermission(android.Manifest.permission.UPDATE_DEVICE_STATS) public void set(@AlarmType int type, long triggerAtMillis, long windowMillis, long intervalMillis, OnAlarmListener listener, Handler targetHandler, WorkSource workSource) { setImpl(type, triggerAtMillis, windowMillis, intervalMillis, 0, null, listener, null, targetHandler, workSource, null); }</code></pre> <p>4.Thread.sleep()然后在一定时间之后再执行想执行的代码:</p> <pre> <code class="language-java">new Thread(new Runnable(){ Thead.sleep(4*1000); doTask(); }).start()</code></pre> <h2>2.他们的各自的实现原理?</h2> <p>答:</p> <h3>1.Timer的实现,是通过内部开启一个TimerThread:</h3> <pre> <code class="language-java">private void mainLoop() { while (true) { try { TimerTask task; boolean taskFired; synchronized(queue) { // Wait for queue to become non-empty while (queue.isEmpty() && newTasksMayBeScheduled) queue.wait(); if (queue.isEmpty()) break; // Queue is empty and will forever remain; die // Queue nonempty; look at first evt and do the right thing long currentTime, executionTime; task = queue.getMin(); synchronized(task.lock) { if (task.state == TimerTask.CANCELLED) { queue.removeMin(); continue; // No action required, poll queue again } currentTime = System.currentTimeMillis(); executionTime = task.nextExecutionTime; if (taskFired = (executionTime<=currentTime)) { if (task.period == 0) { // Non-repeating, remove queue.removeMin(); task.state = TimerTask.EXECUTED; } else { // Repeating task, reschedule queue.rescheduleMin( task.period<0 ? currentTime - task.period : executionTime + task.period); } } } if (!taskFired) // Task hasn't yet fired; wait queue.wait(executionTime - currentTime); } if (taskFired) // Task fired; run it, holding no locks task.run(); } catch(InterruptedException e) { } } }</code></pre> <p>是通过wait和延迟时间到达的时候,调用notify来唤起线程继续执行,这样来实现延迟的话,我们可以回开启一个新的线程,貌似为了个延迟没必要这样吧,定时,频繁执行的任务,再考虑这个吧。</p> <p>2.Handler的postDelay是通过设置Message的when为delay的时间,我们知道当我们的应用开启的时候,会同步开启Looper.loop()方法循环的,不停的通过MeassgeQueue的next方法:</p> <pre> <code class="language-java">Message next() { ...... int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } ...... } }</code></pre> <p>当我们向MessageQueue插入一条延迟的Message的时候,Looper在执行loop方法,底层会调用epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);其中的timeoutMillis参数指定了在没有事件发生的时候epoll_wait调用阻塞的毫秒数(milliseconds)。这样我们在之前的时间内这个时候阻塞了是会释放cpu的资源,等到延迟的时间到了时候,再监控到事件发生。在这里可能有人会有疑问,一直阻塞,那我接下来的消息应该怎么执行呢?我们可以看到当我们插入消息的时候的方法:</p> <pre> <code class="language-java">boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); return false; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { msg.next = p; mMessages = msg; needWake = mBlocked; } else { needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }</code></pre> <p>阻塞了有两种方式唤醒,一种是超时了,一种是被主动唤醒了,在上面我们可以看到当有消息进入的时候,我们会唤醒继续执行,所以我们的即时消息在延迟消息之后插入是没有关系的。然后在延迟时间到了的时候,我们也会被唤醒,执行对应的消息send,以达到延迟时间执行某个任务的目的。</p> <p>优势:这种延迟在阻塞的时候,是会释放cpu的锁,不会过多地占用cpu的资源。</p> <h3>3.AlarmManager的延迟的实现原理,是通过一个AlarmManager的set方法:</h3> <pre> <code class="language-java">IAlarmManager mService.set(mPackageName, type, triggerAtMillis, windowMillis, intervalMillis, flags, operation, recipientWrapper, listenerTag, workSource, alarmClock);</code></pre> <p>这里是通过aidl与AlarmManagerService的所在进程进行通信,具体的实现是在AlarmManagerService类里面:</p> <pre> <code class="language-java">private final IBinder mService = new IAlarmManager.Stub() { @Override public void set(String callingPackage, int type, long triggerAtTime, long windowLength, long interval, int flags, PendingIntent operation, IAlarmListener directReceiver, String listenerTag, WorkSource workSource, AlarmManager.AlarmClockInfo alarmClock) { final int callingUid = Binder.getCallingUid(); if (interval != 0) { if (directReceiver != null) { throw new IllegalArgumentException("Repeating alarms cannot use AlarmReceivers"); } } if (workSource != null) { getContext().enforcePermission( android.Manifest.permission.UPDATE_DEVICE_STATS, Binder.getCallingPid(), callingUid, "AlarmManager.set"); } // No incoming callers can request either WAKE_FROM_IDLE or // ALLOW_WHILE_IDLE_UNRESTRICTED -- we will apply those later as appropriate. flags &= ~(AlarmManager.FLAG_WAKE_FROM_IDLE | AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED); // Only the system can use FLAG_IDLE_UNTIL -- this is used to tell the alarm // manager when to come out of idle mode, which is only for DeviceIdleController. if (callingUid != Process.SYSTEM_UID) { flags &= ~AlarmManager.FLAG_IDLE_UNTIL; } if (windowLength == AlarmManager.WINDOW_EXACT) { flags |= AlarmManager.FLAG_STANDALONE; } if (alarmClock != null) { flags |= AlarmManager.FLAG_WAKE_FROM_IDLE | AlarmManager.FLAG_STANDALONE; } else if (workSource == null && (callingUid < Process.FIRST_APPLICATION_UID || Arrays.binarySearch(mDeviceIdleUserWhitelist, UserHandle.getAppId(callingUid)) >= 0)) { flags |= AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED; flags &= ~AlarmManager.FLAG_ALLOW_WHILE_IDLE; } setImpl(type, triggerAtTime, windowLength, interval, operation, directReceiver, listenerTag, flags, workSource, alarmClock, callingUid, callingPackage); } } }</code></pre> <p>虽然有人觉得用AlarmManager能够在应用关闭的情况下,定时器还能再唤起,经过自己的测试,当杀掉应用程序的进程,AlarmManager的receiver也是接收不到消息的,但是我相信在这里定时器肯定是发送了,但是作为接收方的应用程序进程被杀掉了,执行不了对应的代码。不过有人也觉得AlarmManager更耗电,是因为我们执行定时任务的情况会频繁唤起cpu,但是如果只是用来只是执行延迟任务的话,个人觉得和Handler.postDelayed()相比应该也不会耗电多的。</p> <p>2.在上面的第四种方法,达到的延迟会一直通过Thread.sleep来达到延迟的话,会一直占用cpu的资源,这种方法不赞同使用。</p> <h2>3.总结</h2> <p>如上面我们看到的这样,如果是单纯的实现一个任务的延迟的话,我们可以用Handler.postDelayed()和AlarmManager.set()来实现,用(4)的方法Thread.sleep()的话,首先开启一个新的线程,然后会持有cpu的资源,用(1)的方法,Timer,会开启一个死循环的线程,这样在资源上面都有点浪费。</p> <p>如果大家还有更好的延迟解决方案,可以拿出来大家探讨,如果文章有不对的地方,欢迎拍砖。</p> <p> </p> <p>来自:https://segmentfault.com/a/1190000012328468</p> <p> </p>
本文由用户 wduo8499 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!