Go 1.9 sync.Map揭秘
<p>在Go 1.6之前, 内置的map类型是部分goroutine安全的,并发的读没有问题,并发的写可能有问题。自go 1.6之后, 并发地读写map会报错,这在一些知名的开源库中都存在这个问题,所以go 1.9之前的解决方案是额外绑定一个锁,封装成一个新的struct或者单独使用锁都可以。</p> <p>本文带你深入到 <code>sync.Map</code> 的具体实现中,看看为了增加一个功能,代码是如何变的复杂的,以及作者在实现 <code>sync.Map</code> 的一些思想。 </p> <h3>有并发问题的map</h3> <p>官方的 <a href="/misc/goto?guid=4959750380345159084" rel="nofollow,noindex">faq</a> 已经提到内建的 <code>map</code> 不是线程(goroutine)安全的。 </p> <p>首先,让我们看一段并发读写的代码,下列程序中一个goroutine一直读,一个goroutine一只写同一个键值,即即使读写的键不相同,而且map也没有"扩容"等操作,代码还是会报错。</p> <pre> <code class="language-go">package main func main() { m := make(map[int]int) go func() { for { _ = m[1] } }() go func() { for { m[2] =2 } }() select {} } </code></pre> <p>错误信息是: <code>fatal error: concurrent map read and map write</code> 。 </p> <p>如果你查看Go的源代码: <a href="/misc/goto?guid=4959750380435084902" rel="nofollow,noindex">hashmap_fast.go#L118</a> ,会看到读的时候会检查 <code>hashWriting</code> 标志, 如果有这个标志,就会报并发错误。 </p> <p>写的时候会设置这个标志: <a href="/misc/goto?guid=4959750380513414202" rel="nofollow,noindex">hashmap.go#L542</a></p> <pre> <code class="language-go">h.flags |= hashWriting </code></pre> <p><a href="/misc/goto?guid=4959750380598888434" rel="nofollow,noindex">hashmap.go#L628</a> 设置完之后会取消这个标记。 </p> <p>当然,代码中还有好几处并发读写的检查, 比如写的时候也会检查是不是有并发的写,删除键的时候类似写,遍历的时候并发读写问题等。</p> <p>有时候,map的并发问题不是那么容易被发现, 你可以利用 <code>-race</code> 参数来检查。 </p> <h3>Go 1.9之前的解决方案</h3> <p>但是,很多时候,我们会并发地使用map对象,尤其是在一定规模的项目中,map总会保存goroutine共享的数据。在Go官方blog的 <a href="/misc/goto?guid=4959750380690184421" rel="nofollow,noindex">Go maps in action</a> 一文中,提供了一种简便的解决方案。 </p> <pre> <code class="language-go">var counter = struct{ sync.RWMutex m map[string]int }{m: make(map[string]int)} </code></pre> <p>它使用嵌入struct为map增加一个读写锁。</p> <p>读数据的时候很方便的加锁:</p> <pre> <code class="language-go">counter.RLock() n := counter.m["some_key"] counter.RUnlock() fmt.Println("some_key:", n) </code></pre> <p>写数据的时候:</p> <pre> <code class="language-go">counter.Lock() counter.m["some_key"]++ counter.Unlock() </code></pre> <h3>sync.Map</h3> <p>可以说,上面的解决方案相当简洁,并且利用读写锁而不是Mutex可以进一步减少读写的时候因为锁带来的性能。</p> <p>但是,它在一些场景下也有问题,如果熟悉Java的同学,可以对比一下java的 <code>ConcurrentHashMap</code> 的实现,在map的数据非常大的情况下,一把锁会导致大并发的客户端共争一把锁,Java的解决方案是 <code>shard</code> , 内部使用多个锁,每个区间共享一把锁,这样减少了数据共享一把锁带来的性能影响, <a href="/misc/goto?guid=4959750380777325125" rel="nofollow,noindex">orcaman</a> 提供了这个思路的一个实现: <a href="/misc/goto?guid=4959750380862219815" rel="nofollow,noindex">concurrent-map</a> ,他也询问了Go相关的开发人员是否在Go中也实现这种 <a href="/misc/goto?guid=4959750380948615463" rel="nofollow,noindex">方案</a> ,由于实现的复杂性,答案是 <code>Yes, we considered it.</code> ,但是除非有特别的性能提升和应用场景,否则没有进一步的开发消息。 </p> <p>那么,在Go 1.9中 <code>sync.Map</code> 是怎么实现的呢?它是如何解决并发提升性能的呢? </p> <p><code>sync.Map</code> 的实现有几个优化点,这里先列出来,我们后面慢慢分析。 </p> <ol> <li>空间换时间。 通过冗余的两个数据结构(read、dirty),实现加锁对性能的影响。</li> <li>使用只读数据(read),避免读写冲突。</li> <li>动态调整,miss次数多了之后,将dirty数据提升为read。</li> <li>double-checking。</li> <li>延迟删除。 删除一个键值只是打标记,只有在提升dirty的时候才清理删除的数据。</li> <li>优先从read读取、更新、删除,因为对read的读取不需要锁。</li> </ol> <p>下面我们介绍 <code>sync.Map</code> 的重点代码,以便理解它的实现思想。 </p> <p>首先,我们看一下 <code>sync.Map</code> 的数据结构: </p> <pre> <code class="language-go">type Map struct { // 当涉及到dirty数据的操作的时候,需要使用这个锁 mu Mutex // 一个只读的数据结构,因为只读,所以不会有读写冲突。 // 所以从这个数据中读取总是安全的。 // 实际上,实际也会更新这个数据的entries,如果entry是未删除的(unexpunged), 并不需要加锁。如果entry已经被删除了,需要加锁,以便更新dirty数据。 read atomic.Value // readOnly // dirty数据包含当前的map包含的entries,它包含最新的entries(包括read中未删除的数据,虽有冗余,但是提升dirty字段为read的时候非常快,不用一个一个的复制,而是直接将这个数据结构作为read字段的一部分),有些数据还可能没有移动到read字段中。 // 对于dirty的操作哦需要加锁,因为对它的操作可能会有读写竞争。 // 当dirty为空的时候, 比如初始化或者刚提升完,下一次的写操作会复制read字段中未删除的数据到这个数据中。 dirty map[interface{}]*entry // 当从Map中读取entry的时候,如果read中不包含这个entry,会尝试从dirty中读取,这个时候会将misses加一, // 当misses累积到 dirty的长度的时候, 就会将dirty提升为read,避免从dirty中miss太多次。因为操作dirty需要加锁。 misses int } </code></pre> <p>它的数据结构很简单,值包含四个字段: <code>read</code> 、 <code>mu</code> 、 <code>dirty</code> 、 <code>misses</code> 。 </p> <p>它使用了冗余的数据结构 <code>read</code> 、 <code>dirty</code> 。 <code>dirty</code> 中会包含 <code>read</code> 中为删除的entries,新增加的entries会加入到 <code>dirty</code> 中。 </p> <p><code>read</code> 的数据结构是: </p> <pre> <code class="language-go">type readOnly struct { m map[interface{}]*entry amended bool // 如果Map.dirty有些数据不在中的时候,这个值为true } </code></pre> <p><code>amended</code> 指明 <code>Map.dirty</code> 中有 <code>readOnly.m</code> 未包含的数据,所以如果从 <code>Map.read</code> 找不到数据的话,还要进一步到 <code>Map.dirty</code> 中查找。 </p> <p>对Map.read的修改是通过原子操作进行的。</p> <p>虽然 <code>read</code> 和 <code>dirty</code> 有冗余数据,但这些数据是通过指针指向同一个数据,所以尽管Map的value会很大,但是冗余的空间占用还是有限的。 </p> <p><code>readOnly.m</code> 和 <code>Map.dirty</code> 存储的值类型是 <code>*entry</code> ,它包含一个指针p, 指向用户存储的value值。 </p> <pre> <code class="language-go">type entry struct { p unsafe.Pointer // *interface{} } </code></pre> <p>p有三种值:</p> <ul> <li>nil: entry已被删除了,并且m.dirty为nil</li> <li>expunged: entry已被删除了,并且m.dirty不为nil,而且这个entry不存在于m.dirty中</li> <li>其它: entry是一个正常的值</li> </ul> <p>以上是 <code>sync.Map</code> 的数据结构,下面我们重点看看 <code>Load</code> 、 <code>Store</code> 、 <code>Delete</code> 、 <code>Range</code> 这四个方法,其它辅助方法可以参考这四个方法来理解。 </p> <p>Load</p> <p>加载方法,也就是提供一个键 <code>key</code> ,查找对应的值 <code>value</code> ,如果不存在,通过 <code>ok</code> 反映: </p> <pre> <code class="language-go">func (m *Map) Load(key interface{}) (value interface{}, ok bool) { // 1.首先从m.read中得到只读readOnly,从它的map中查找,不需要加锁 read, _ := m.read.Load().(readOnly) e, ok := read.m[key] // 2. 如果没找到,并且m.dirty中有新数据,需要从m.dirty查找,这个时候需要加锁 if !ok && read.amended { m.mu.Lock() // 双检查,避免加锁的时候m.dirty提升为m.read,这个时候m.read可能被替换了。 read, _ = m.read.Load().(readOnly) e, ok = read.m[key] // 如果m.read中还是不存在,并且m.dirty中有新数据 if !ok && read.amended { // 从m.dirty查找 e, ok = m.dirty[key] // 不管m.dirty中存不存在,都将misses计数加一 // missLocked()中满足条件后就会提升m.dirty m.missLocked() } m.mu.Unlock() } if !ok { return nil, false } return e.load() } </code></pre> <p>这里有两个值的关注的地方。一个是首先从 <code>m.read</code> 中加载,不存在的情况下,并且 <code>m.dirty</code>中有新数据,加锁,然后从 <code>m.dirty</code> 中加载。 </p> <p>二是这里使用了双检查的处理,因为在下面的两个语句中,这两行语句并不是一个原子操作。</p> <pre> <code class="language-go">if !ok && read.amended { m.mu.Lock() </code></pre> <p>虽然第一句执行的时候条件满足,但是在加锁之前, <code>m.dirty</code> 可能被提升为 <code>m.read</code> ,所以加锁后还得再检查 <code>m.read</code> ,后续的方法中都使用了这个方法。 </p> <p>双检查的技术Java程序员非常熟悉了,单例模式的实现之一就是利用双检查的技术。</p> <p>可以看到,如果我们查询的键值正好存在于 <code>m.read</code> 中,无须加锁,直接返回,理论上性能优异。即使不存在于 <code>m.read</code> 中,经过 <code>miss</code> 几次之后, <code>m.dirty</code> 会被提升为 <code>m.read</code> ,又会从 <code>m.read</code> 中查找。所以对于更新/增加较少,加载存在的key很多的case,性能基本和无锁的map类似。 </p> <p>下面看看 <code>m.dirty</code> 是如何被提升的。 <code>missLocked</code> 方法中可能会将 <code>m.dirty</code> 提升。 </p> <pre> <code class="language-go">func (m *Map) missLocked() { m.misses++ if m.misses < len(m.dirty) { return } m.read.Store(readOnly{m: m.dirty}) m.dirty = nil m.misses =0 } </code></pre> <p>上面的最后三行代码就是提升 <code>m.dirty</code> 的,很简单的将 <code>m.dirty</code> 作为 <code>readOnly</code> 的 <code>m</code> 字段,原子更新 <code>m.read</code> 。提升后 <code>m.dirty</code> 、 <code>m.misses</code> 重置, 并且 <code>m.read.amended</code> 为false。 </p> <p>Store</p> <p>这个方法是更新或者新增一个entry。</p> <pre> <code class="language-go">func (m *Map) Store(key, value interface{}) { // 如果m.read存在这个键,并且这个entry没有被标记删除,尝试直接存储。 // 因为m.dirty也指向这个entry,所以m.dirty也保持最新的entry。 read, _ := m.read.Load().(readOnly) if e, ok := read.m[key]; ok && e.tryStore(&value) { return } // 如果`m.read`不存在或者已经被标记删除 m.mu.Lock() read, _ = m.read.Load().(readOnly) if e, ok := read.m[key]; ok { if e.unexpungeLocked() { //标记成未被删除 m.dirty[key] = e //m.dirty中不存在这个键,所以加如m.dirty } e.storeLocked(&value) //更新 } else if e, ok := m.dirty[key]; ok { // m.dirty存在这个键,更新 e.storeLocked(&value) } else { //新键值 if !read.amended { //m.dirty中没有新的数据,往m.dirty中增加第一个新键 m.dirtyLocked() //从m.read中复制未删除的数据 m.read.Store(readOnly{m: read.m, amended: true}) } m.dirty[key] = newEntry(value) //将这个entry加入到m.dirty中 } m.mu.Unlock() } func (m *Map) dirtyLocked() { if m.dirty != nil { return } read, _ := m.read.Load().(readOnly) m.dirty = make(map[interface{}]*entry, len(read.m)) for k, e := range read.m { if !e.tryExpungeLocked() { m.dirty[k] = e } } } func (e *entry) tryExpungeLocked() (isExpunged bool) { p := atomic.LoadPointer(&e.p) for p == nil { // 将已经删除标记为nil的数据标记为expunged if atomic.CompareAndSwapPointer(&e.p, nil, expunged) { return true } p = atomic.LoadPointer(&e.p) } return p == expunged } </code></pre> <p>你可以看到,以上操作都是先从操作 <code>m.read</code> 开始的,不满足条件再加锁,然后操作 <code>m.dirty</code>。 </p> <p><code>Store</code> 可能会在某种情况下(初始化或者m.dirty刚被提升后)从 <code>m.read</code> 中复制数据,如果这个时候 <code>m.read</code> 中数据量非常大,可能会影响性能。 </p> <p>Delete</p> <p>删除一个键值。</p> <pre> <code class="language-go">func (m *Map) Delete(key interface{}) { read, _ := m.read.Load().(readOnly) e, ok := read.m[key] if !ok && read.amended { m.mu.Lock() read, _ = m.read.Load().(readOnly) e, ok = read.m[key] if !ok && read.amended { delete(m.dirty, key) } m.mu.Unlock() } if ok { e.delete() } } </code></pre> <p>同样,删除操作还是从 <code>m.read</code> 中开始, 如果这个entry不存在于 <code>m.read</code> 中,并且 <code>m.dirty</code> 中有新数据,则加锁尝试从 <code>m.dirty</code> 中删除。 </p> <p>注意,还是要双检查的。 从 <code>m.dirty</code> 中直接删除即可,就当它没存在过,但是如果是从 <code>m.read</code> 中删除,并不会直接删除,而是打标记: </p> <pre> <code class="language-go">func (e *entry) delete() (hadValue bool) { for { p := atomic.LoadPointer(&e.p) // 已标记为删除 if p == nil || p == expunged { return false } // 原子操作,e.p标记为nil if atomic.CompareAndSwapPointer(&e.p, p, nil) { return true } } } </code></pre> <p>Range</p> <p>因为 <code>for ... range map</code> 是内建的语言特性,所以没有办法使用 <code>for range</code> 遍历 <code>sync.Map</code>, 但是可以使用它的 <code>Range</code> 方法,通过回调的方式遍历。 </p> <pre> <code class="language-go">func (m *Map) Range(f func(key, value interface{}) bool) { read, _ := m.read.Load().(readOnly) // 如果m.dirty中有新数据,则提升m.dirty,然后在遍历 if read.amended { //提升m.dirty m.mu.Lock() read, _ = m.read.Load().(readOnly) //双检查 if read.amended { read = readOnly{m: m.dirty} m.read.Store(read) m.dirty = nil m.misses =0 } m.mu.Unlock() } // 遍历, for range是安全的 for k, e := range read.m { v, ok := e.load() if !ok { continue } if !f(k, v) { break } } } </code></pre> <p>Range方法调用前可能会做一个 <code>m.dirty</code> 的提升,不过提升 <code>m.dirty</code> 不是一个耗时的操作。 </p> <h3>sync.Map的性能</h3> <p>Go 1.9源代码中提供了性能的测试: <a href="/misc/goto?guid=4959750381035551682" rel="nofollow,noindex">map_bench_test.go</a> 、 <a href="/misc/goto?guid=4959750381117239191" rel="nofollow,noindex">map_reference_test.go</a></p> <p>我也基于这些代码修改了一下,得到下面的测试数据,相比较以前的解决方案,性能多少回有些提升,如果你特别关注性能,可以考虑 <code>sync.Map</code> 。 </p> <pre> <code class="language-go">BenchmarkHitAll/*sync.RWMutexMap-4 20000000 83.8 ns/op BenchmarkHitAll/*sync.Map-4 30000000 59.9 ns/op BenchmarkHitAll_WithoutPrompting/*sync.RWMutexMap-4 20000000 96.9 ns/op BenchmarkHitAll_WithoutPrompting/*sync.Map-4 20000000 64.1 ns/op BenchmarkHitNone/*sync.RWMutexMap-4 20000000 79.1 ns/op BenchmarkHitNone/*sync.Map-4 30000000 43.3 ns/op BenchmarkHit_WithoutPrompting/*sync.RWMutexMap-4 20000000 81.5 ns/op BenchmarkHit_WithoutPrompting/*sync.Map-4 30000000 44.0 ns/op BenchmarkUpdate/*sync.RWMutexMap-4 5000000 328 ns/op BenchmarkUpdate/*sync.Map-4 10000000 146 ns/op BenchmarkUpdate_WithoutPrompting/*sync.RWMutexMap-4 5000000 336 ns/op BenchmarkUpdate_WithoutPrompting/*sync.Map-4 5000000 324 ns/op BenchmarkDelete/*sync.RWMutexMap-4 10000000 155 ns/op BenchmarkDelete/*sync.Map-4 30000000 55.0 ns/op BenchmarkDelete_WithoutPrompting/*sync.RWMutexMap-4 10000000 173 ns/op BenchmarkDelete_WithoutPrompting/*sync.Map-4 10000000 147 ns/op </code></pre> <h3>其它</h3> <p><code>sync.Map</code> 没有 <code>Len</code> 方法,并且目前没有迹象要加上 ( <a href="/misc/goto?guid=4959750381207488213" rel="nofollow,noindex">issue#20680</a> ),所以如果想得到当前Map中有效的entries的数量,需要使用 <code>Range</code> 方法遍历一次, 比较X疼。 </p> <p><code>LoadOrStore</code> 方法如果提供的key存在,则返回已存在的值(Load),否则保存提供的键值(Store)。</p> <p> </p> <p>来自:http://colobu.com/2017/07/11/dive-into-sync-Map/</p>
本文由用户 mwan1449Cz 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!