六行python代码的爱心曲线
<p>前些日子在做绩效体系的时候,遇到了一件囧事,居然忘记怎样在Excel上拟合正态分布了,尽管在第二天重新拾起了Excel中那几个常见的函数和图像的做法,还是十分的惭愧。实际上,当时有效偏颇了,忽略了问题的本质,解决数据分析和可视化问题,其实也是Python的拿手好戏。</p> <p>例如,画出指定区间的一个多项式函数:</p> <p style="text-align:center"><img src="https://simg.open-open.com/show/e5f06cfedfcdc911dc433742b10081c6.png"></p> <p>Python 代码如下:</p> <pre> <code class="language-python">import numpy as np import matplotlib.pyplot as plt X = np.linspace(-4, 4, 1024) Y = .25 * (X + 4.) * (X + 1.) * (X - 2.) plt.title('$f(x)=\\frac{1}{4}(x+4)(x+1)(x-2)$') plt.plot(X, Y, c = 'g') plt.show()</code></pre> <p>通过numpy的linspace方法来确定横坐标x的取值范围,列出方程,然后调用matplotlib的pyplot画出函数曲线即可。numpy 是一个用python实现的科学计算包,包括一个强大的N维数组对象Array和成熟的函数库,有用于整合C/C++和Fortran代码的工具包,提供了实用的线性代数、傅里叶变换和随机数生成函数等工具,可以理解成Matlab。</p> <p>记得中学的时候,我问老师三角函数到底有啥用?(无知者无畏)老师反问我,“如果给了你一块洋铁,怎样才能剪出煤炉烟囱的拐弯呢?”,现在仍然记得老师的这个例子,哪些看似抽象的数学公式,实际上是自己不知道她们的应用场景而已。</p> <p style="text-align:center"><img src="https://simg.open-open.com/show/a23c28313e59247f3906160e9421e01d.png"></p> <p>Python代码如下:</p> <pre> <code class="language-python">import numpy as np import matplotlib.pyplot as plt X = np.linspace(0, 2 * np.pi, 100) YSinValues = np.sin(X) YCosValues = np.cos(X) plt.plot(X, YSinValues) plt.plot(X, YCosValues) plt.show()</code></pre> <p>Matplotlib 是一个 Python 的 2D绘图库,甚至可以生成出版质量级别的图形。</p> <p>对于那些正态分布而言,Python 画起来也就相当简单了:</p> <pre> <code class="language-python">import numpy as np import matplotlib.pyplot as plt def pdf(X, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (X - mu) ** 2) X = np.linspace(-6, 6, 1000) for i in range(3): samples = np.random.standard_normal(10) mu, sigma = np.mean(samples), np.std(samples) plt.plot(X, pdf(X, mu, sigma), color = '.66') plt.plot(X, pdf(X, 0., 1.), color = 'b') plt.show()</code></pre> <p>为了不显得单调,这里多画了几条曲线。只要算出方差和均值,从excel中读出哪些数值就可以拟合正态分布了。</p> <p style="text-align:center"><img src="https://simg.open-open.com/show/95cfc092a95b8af600bbd645a0da7d27.png"></p> <p>回归到主题,关于爱心线,有这样一个凄美的爱情故事。</p> <p>迩来流浪于吴越,一片闲云空皎洁。</p> <p>300多年前,斯德哥尔摩的街头,落魄的笛卡尔过着乞讨的生活,全部的财产破破烂烂的衣服和随身所带的几本数学书籍。清高的笛卡尔没有开口请求路人施舍,只是默默地低头在纸上写写画画,潜心于他的数学世界。 一个宁静的午后,笛卡尔照例坐在街头的阳光中研究数学问题,身边过往的人群,喧闹的车马队伍,都无法对他造成干扰。</p> <p>有美一人,婉如清扬。邂逅相遇,与子偕臧。</p> <p>“你在干什么呢?”扭过头,笛卡尔看到一张年轻秀丽的睑庞,一双清澈的眼睛如湛蓝的湖水,楚楚动人,她就是瑞典的小公主,国王最宠爱的女儿克里斯汀。 她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现,这个小女孩思维敏捷,对数学有着浓厚的兴趣。</p> <p>几天后, 笛卡尔 意外地接到通知,国王聘请他做小公主的数学老师。满心疑惑的笛卡尔跟随侍卫一起来到皇宫,他听到了从远处传来的银铃般的笑声。他看到了那天在街头偶遇的女孩子,从此,他当上了公主的数学老师。</p> <p>情不知所起,一往而深</p> <p>公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。笛卡尔向她介绍了直角坐标系,代数与几何可以结合起来,也就是日后笛卡尔创立的解析几何学雏形。 在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,她对曲线着了迷。每天的形影不离也使他们彼此产生了爱慕之心。</p> <p>在瑞典这个浪漫的国度里,一段纯粹而美好的爱情悄然萌发。</p> <p>念去去,千里烟波,暮霭沉沉楚天阔。</p> <p>他们的恋情传到了国王的耳中,国王大怒,下令将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。</p> <p>当时,欧洲大陆正在流行黑死病。笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他日夜思念的还是街头偶遇的那张温暖笑脸。他每天坚持给她写信,盼望着她的回音。然而,这些信都被国王拦截下来,公主一直没有收到他的任何消息。</p> <p>欲知心里事,看取腹中书.</p> <p>在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。此时,被软禁在宫中的小公主依然徘徊在皇宫的走廊里,思念着远方的情人。</p> <p>这最后一封信上没有写一句话,只有一个方程:r=a(1-sinθ)。</p> <p>国王以为这个方程里隐藏着两个人的秘密,便把全城的数学家召集到皇宫,但是没有人能解开这个函数式。他不忍看着心爱的女儿每天闷闷不乐,便把这封信给了她。拿到信的克里斯汀欣喜若狂,她立即明白了恋人的意图,找来纸和笔,把图形画了出来,一颗心形图案出现在眼前,克里斯</p> <p>汀</p> <p>泪流满面,这条曲线就是著名的“心形线”。</p> <p>国王去世后,克里斯汀继承王位,便立刻派人去法国寻找心上人的下落,收到的却是笛卡尔去世的消息,留下了一个永远的遗憾…… 这封享誉世界的另类情书,据说至今还保存在欧洲笛卡尔的纪念馆里。</p> <p>这个故事的出处无从知道,网络上流传着各种各样的版本,甚至在百度百科也有着这个故事。后来,有人考证了真实性,认为这是一个美丽的谎言,但并不妨碍人们对爱心线喜爱。</p> <p>在直角坐标系中,爱心线的方程的python 表达为: x** 2+ y** 2 + a * x= a * sqrt(x** 2+y** 2) 和 x** 2+ y** 2 - a * x= a * sqrt(x** 2+y** 2) 通过x 来求对应的y值很麻烦,就像软件设计中的“万能层”那样,可以采用参数方程来表示:</p> <pre> <code class="language-python">x=a*(2*cos(t)-cos(2*t)) y=a*(2*sin(t)-sin(2*t))</code></pre> <p>具体的python代码如下:</p> <pre> <code class="language-python">import numpy as np import matplotlib.pyplot as plt a = 1 t = np.linspace(0 , 2 * np.pi, 1024) X = a*(2*np.cos(t)-np.cos(2*t)) Y = a*(2*np.sin(t)-np.sin(2*t)) plt.plot(Y, X,color='r') plt.show()</code></pre> <p>代表爱心的心形线来了:</p> <p style="text-align:center"><img src="https://simg.open-open.com/show/4f59fdf98497e06ba34195671a63d4e7.png"></p> <p>但这不是六行代码呀?也不是r=a(1-sinθ)呀? 的确如此,那是极坐标系,python 的matplotlib同样支持极坐标系的,爱心线的六行pyton代码如下:</p> <pre> <code class="language-python">import numpy as np import matplotlib.pyplot as plt T = np.linspace(0 , 2 * np.pi, 1024) plt.axes(polar = True) plt.plot(T, 1. - np.sin(T),color="r") plt.show()</code></pre> <p>这样,得到的就是封面中的图像了:</p> <p style="text-align:center"><img src="https://simg.open-open.com/show/a31eb0d6a13f55b0d7d218dcd9d7393a.png"></p> <p>心形线确实是爱心满满,如果融入了忧伤会是怎样呢?</p> <pre> <code class="language-python">import numpy as np import matplotlib.pyplot as plt x = np.linspace(-8 , 8, 1024) y1 = 0.618*np.abs(x) - 0.8* np.sqrt(64-x**2) y2 = 0.618*np.abs(x) + 0.8* np.sqrt(64-x**2) plt.plot(x, y1, color = 'r') plt.plot(x, y2, color = 'r') plt.show()</code></pre> <p>这样就得到了另一个爱心线:</p> <p style="text-align:center"><img src="https://simg.open-open.com/show/68164f4503fc5c87c0a4de8ed57e38b2.png"></p> <p>网络上还有关于爱心线的各种漂亮实现,也充满了各种各样的情绪,但对于每一种,基本上都可以用python 相对简洁的实现。</p> <p>实际上,绘图很简单,难的是那些曲线方程的表达以及实际的应用场景需求,比如螺旋线。</p> <p style="text-align:center"><img src="https://simg.open-open.com/show/a7da5384dff25769847c529020176687.png"></p> <p>进一步,还可以画出各种的3维视图,例如: </p> <p style="text-align:center"><img src="https://simg.open-open.com/show/96c29f0ad80da23584c144cfb2c2b85c.png"></p> <p>作为数据分析乃至大数据处理的最后一个环节,就是所谓洞见的可视化,python 可以说是其中的一个简单实用的工具。</p> <p>参考阅读</p> <p>http://matplotlib.org/</p> <p>《Python 数据可视化编程实战》</p> <p>《Python 数据分析实战》</p> <p> </p> <p>来自:http://blog.csdn.net/wireless_com/article/details/69817498</p> <p> </p>
本文由用户 lres9787 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!