Python并发编程之线程池/进程池
<h2>引言</h2> <p>Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间。但从Python3.2开始,标准库为我们提供了 concurrent.futures 模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。</p> <h2>Executor和Future</h2> <p>concurrent.futures模块的基础是 Exectuor ,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类 ThreadPoolExecutor 和 ProcessPoolExecutor 却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。</p> <p>Future 这个概念相信有java和nodejs下编程经验的朋友肯定不陌生了, 你可以把它理解为一个在未来完成的操作 ,这是异步编程的基础,传统编程模式下比如我们操作queue.get的时候,在等待返回结果之前会产生阻塞,cpu不能让出来做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。</p> <p>p.s: 如果你依然在坚守Python2.x,请先安装futures模块。</p> <pre> <code class="language-python">pipinstallfutures </code></pre> <h2>使用submit来操作线程池/进程池</h2> <p>我们先通过下面这段代码来了解一下线程池的概念</p> <pre> <code class="language-python"># example1.py from concurrent.futuresimport ThreadPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ThreadPoolExecutor(max_workers=2) # 创建一个最大可容纳2个task的线程池 future1 = pool.submit(return_future_result, ("hello")) # 往线程池里面加入一个task future2 = pool.submit(return_future_result, ("world")) # 往线程池里面加入一个task print(future1.done()) # 判断task1是否结束 time.sleep(3) print(future2.done()) # 判断task2是否结束 print(future1.result()) # 查看task1返回的结果 print(future2.result()) # 查看task2返回的结果 </code></pre> <p>我们根据运行结果来分析一下。我们使用 <em>submit</em> 方法来往线程池中加入一个task,submit返回一个 <em>Future对象</em> ,对于Future对象可以简单地理解为一个在未来完成的操作。在第一个print语句中很明显因为time.sleep(2)的原因我们的future1没有完成,因为我们使用time.sleep(3)暂停了主线程,所以到第二个print语句的时候我们线程池里的任务都已经全部结束。</p> <pre> <code class="language-python">ziwenxie :: ~ » pythonexample1.py False True hello world # 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行 ziwenxie :: ~ » ps -eLf | greppython ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 pythonexample1.py ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 pythonexample1.py ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 pythonexample1.py </code></pre> <p>上面的代码我们也可以改写为进程池形式,api和线程池如出一辙,我就不罗嗦了。</p> <pre> <code class="language-python"># example2.py from concurrent.futuresimport ProcessPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ProcessPoolExecutor(max_workers=2) future1 = pool.submit(return_future_result, ("hello")) future2 = pool.submit(return_future_result, ("world")) print(future1.done()) time.sleep(3) print(future2.done()) print(future1.result()) print(future2.result()) </code></pre> <p>下面是运行结果</p> <pre> <code class="language-python">ziwenxie :: ~ » pythonexample2.py False True hello world ziwenxie :: ~ » ps -eLf | greppython ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 pythonexample2.py ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 pythonexample2.py ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 pythonexample2.py ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 pythonexample2.py ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 pythonexample2.py </code></pre> <h2>使用map/wait来操作线程池/进程池</h2> <p>除了submit,Exectuor还为我们提供了map方法,和内建的map用法类似,下面我们通过两个例子来比较一下两者的区别。</p> <h3>使用submit操作回顾</h3> <pre> <code class="language-python"># example3.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url, timeout): with urllib.request.urlopen(url, timeout=timeout) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: # Start the load operations and mark each future with its URL future_to_url = {executor.submit(load_url, url, 60): urlfor urlin URLS} for futurein concurrent.futures.as_completed(future_to_url): url = future_to_url[future] try: data = future.result() except Exception as exc: print('%r generated an exception: %s' % (url, exc)) else: print('%r page is %d bytes' % (url, len(data))) </code></pre> <p>从运行结果可以看出, <strong>as_completed不是按照URLS列表元素的顺序返回的</strong> 。</p> <pre> <code class="language-python">ziwenxie :: ~ » pythonexample3.py 'http://example.com/' pageis 1270 byte 'https://api.github.com/' pageis 2039 bytes 'http://httpbin.org' pageis 12150 bytes </code></pre> <h3>使用map</h3> <pre> <code class="language-python"># example4.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url): with urllib.request.urlopen(url, timeout=60) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: for url, datain zip(URLS, executor.map(load_url, URLS)): print('%r page is %d bytes' % (url, len(data))) </code></pre> <p>从运行结果可以看出, <strong>map是按照URLS列表元素的顺序返回的</strong> ,并且写出的代码更加简洁直观,我们可以根据具体的需求任选一种。</p> <pre> <code class="language-python">ziwenxie :: ~ » pythonexample4.py 'http://httpbin.org' pageis 12150 bytes 'http://example.com/' pageis 1270 bytes 'https://api.github.com/' pageis 2039 bytes </code></pre> <h3>第三种选择wait</h3> <p>wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,默认设置为ALL_COMPLETED。</p> <p>我们通过下面这个例子来看一下三个参数的区别</p> <pre> <code class="language-python">from concurrent.futuresimport ThreadPoolExecutor, wait, as_completed from time import sleep from random import randint def return_after_random_secs(num): sleep(randint(1, 5)) return "Return of {}".format(num) pool = ThreadPoolExecutor(5) futures = [] for x in range(5): futures.append(pool.submit(return_after_random_secs, x)) print(wait(futures)) # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED')) </code></pre> <p>如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成。</p> <pre> <code class="language-python">ziwenxie :: ~ » pythonexample5.py DoneAndNotDoneFutures(done={ <Futureat 0x7f0b06c9bc88 state=finishedreturnedstr>, <Futureat 0x7f0b06cbaa90 state=finishedreturnedstr>, <Futureat 0x7f0b06373898 state=finishedreturnedstr>, <Futureat 0x7f0b06352ba8 state=finishedreturnedstr>, <Futureat 0x7f0b06373b00 state=finishedreturnedstr>}, not_done=set()) </code></pre> <p>如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。</p> <pre> <code class="language-python">ziwenxie :: ~ » pythonexample5.py DoneAndNotDoneFutures(done={ <Futureat 0x7f84109edb00 state=finishedreturnedstr>, <Futureat 0x7f840e2e9320 state=finishedreturnedstr>, <Futureat 0x7f840f25ccc0 state=finishedreturnedstr>}, not_done={<Futureat 0x7f840e2e9ba8 state=running>, <Futureat 0x7f840e2e9940 state=running>}) </code></pre> <h2>思考题</h2> <p>写一个小程序对比multiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在执行效率上的差距,结合上面提到的Future思考为什么会造成这样的结果。</p> <p> </p> <p>来自:http://python.jobbole.com/87272/</p> <p> </p>
本文由用户 sulx8238 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!