| 注册
请输入搜索内容

热门搜索

Java Linux MySQL PHP JavaScript Hibernate jQuery Nginx
ggaq6793
9年前发布

Linux Hook 笔记

来自: http://www.cnblogs.com/pannengzhi/p/5203467.html

相信很多人对"Hook"都不会陌生,其中文翻译为"钩子".在编程中,

钩子表示一个可以允许编程者插入自定义程序的地方,通常是打包好的程序中提供的接口.

比如,我们想要提供一段代码来分析程序中某段逻辑路径被执行的频率,或者想要在其中

插入更多功能时就会用到钩子. 钩子都是以固定的目的提供给用户的,并且一般都有文档说明.

通过Hook,我们可以暂停系统调用,或者通过改变系统调用的参数来改变正常的输出结果,

甚至可以中止一个当前运行中的进程并且将控制权转移到自己手上.

基本概念

操作系统通过一系列称为系统调用的方法来提供各种服务.他们提供了标准的API来访问下面的

硬件设备和底层服务,比如文件系统. 以32位系统为例,当进程运行系统调用前,会先把系统调用号放到寄存器

%eax 中,并且将该系统调用的参数依次放入寄存器 %ebx, %ecx, %edx 以及 %esi 和 %edi 中.

以write系统调用为例:

write(2, "Hello", 5);

在32位系统中会转换成:

movl   $1, %eax  movl   $2, %ebx  movl   $hello,%ecx  movl   $5, %edx  int    $0x80

其中 1 为write的系统调用号, 所有的系统调用号码定义在 unistd.h 文件中. $hello表示字符串

"Hello"的地址; 32位Linux系统通过0x80中断来进行系统调用.

如果是64位系统则有所不同, 用户层应用层用整数寄存器 %rdi, %rsi, %rdx, %rcx, %r8 以及 %r9 来传参,

内核接口 用 %rdi, %rsi, %rdx, %r10, %r8 以及 %r10 来传参. 并且用 syscall 指令而不是80中断

来进行系统调用. 相同之处是都用寄存器 %rax 来保存调用号和返回值.

更多关于32位和64位汇编指令的区别可以参考 stack overflow的总结 ,

因为我当前环境是64位Linux,所以下文的操作都以64位系统为例.

进程追踪

上面说到钩子一般由程序提供,那么操作系统内核作为一个程序,是否有提供相应的钩子呢?

答案是肯定的, ptrace (Process Trace)系统调用就提供了这样的功能. ptrace提供了许多

方法来观察和控制其他进程的执行, 并且可以检查和修改其内核镜像和寄存器. 通常用来

作为调试器(如gdb)或用来跟踪各种其他系统调用.

那么,ptrace在程序运行的哪个阶段起作用呢? 答案是在执行系统调用之前. 内核会先检查是否

进程正在被追踪, 如果是的话, 内核会停止进程并将控制权转移给追踪进程, 因此其可以查看和

修改被追踪进程的寄存器. 举例说明:

#include <stdio.h>  #include <unistd.h>  #include <sys/ptrace.h>  #include <sys/types.h>  #include <sys/wait.h>  #include <sys/reg.h>   /* For constants ORIG_RAX etc */  int main()  {   pid_t child;      long orig_rax;      child = fork();      if(child == 0) {          ptrace(PTRACE_TRACEME, 0, NULL, NULL);          execl("/bin/ls", "ls", NULL);      }      else { wait(NULL);          orig_rax = ptrace(PTRACE_PEEKUSER,                            child, 8 * ORIG_RAX,                            NULL);          printf("The child made a "                 "system call %ld\n", orig_rax);          ptrace(PTRACE_CONT, child, NULL, NULL);      }      return 0;  }

程序编译运行后输出:

The child made a system call 59

以及 ls 的结果. 系统调用号59是 __NR_execve , 由子进程调用的 execl 产生.

在上面的例子中我们可以看见, 父进程fork了一个子进程,并且在子进程中进行系统调用.

在执行调用前,子进程运行了ptrace,并设置第一个参数为 PTRACE_TRACEME , 这告诉内核

当前进程正在被追踪. 因此当子进程运行到execl时, 会把控制权转回父进程. 父进程用wait

函数(系统调用)来等待内核通知. 然后就可以查看系统调用的参数以及做其他事情.

当系统调用出现的时候, 内核会保存原始的rax寄存器值(其中包含系统调用号), 我们可以

从子进程的 USER 段读取这个值, 这里是使用ptrace并且设置第一个参数为 PTRACE_PEEKUSER .

当我们检查完了系统调用之后, 可以调用ptrace并设置参数 PTRACE_CONT 让子进程继续运行.

值得一提的是, 这里的child为子进程的进程ID, 由fork函数返回.

寄存器读写

ptrace函数通过四个参数来调用, 其原型为:

long ptrace(enum __ptrace_request request,              pid_t pid,              void *addr,              void *data);

其中第一个参数决定了ptrace的行为以及其他参数的含义, request的值可以是下列值中的一个:

PTRACE_TRACEME, PTRACE_PEEKTEXT, PTRACE_PEEKDATA, PTRACE_PEEKUSER, PTRACE_POKETEXT,   PTRACE_POKEDATA, PTRACE_POKEUSER, PTRACE_GETREGS, PTRACE_GETFPREGS, PTRACE_SETREGS,   PTRACE_SETFPREGS, PTRACE_CONT, PTRACE_SYSCALL, PTRACE_SINGLESTEP, PTRACE_DETACH.

在系统调用追踪中, 常见的流程如下图所示:

读取系统调用参数

系统调用的参数按顺序存放在rbx,rcx...之中,因此以write系统调用为例看如何读取寄存器的值:

#include <sys/ptrace.h>  #include <sys/wait.h>  #include <sys/reg.h>   /* For constants ORIG_EAX etc */  #include <sys/user.h>  #include <sys/syscall.h> /* SYS_write */  int main() {      pid_t child;      long orig_rax;      int status;      int iscalling = 0;      struct user_regs_struct regs;        child = fork();      if(child == 0) {          ptrace(PTRACE_TRACEME, 0, NULL, NULL);          execl("/bin/ls", "ls", "-l", "-h", NULL);      } else {          while(1) {              wait(&status);              if(WIFEXITED(status))                  break;              orig_rax = ptrace(PTRACE_PEEKUSER,                                child, 8 * ORIG_RAX,                                NULL);              if(orig_rax == SYS_write) {                  ptrace(PTRACE_GETREGS, child, NULL, &regs);                  if(!iscalling) {                      iscalling = 1;                      printf("SYS_write call with %lld, %lld, %lld\n",                              regs.rdi, regs.rsi, regs.rdx);                  }                  else {                      printf("SYS_write call return %lld\n", regs.rax);                      iscalling = 0;                  }              }              ptrace(PTRACE_SYSCALL, child, NULL, NULL);          }      }      return 0;  }

编译运新有如下输出:

SYS_write call with 1, 140693012086784, 10  total 32K  SYS_write call return 10  SYS_write call with 1, 140693012086784, 45  -rwxr-xr-x 1 lxy lxy  13K Feb 21 12:19 a.out  SYS_write call return 45  SYS_write call with 1, 140693012086784, 46  -rw-r--r-- 1 lxy lxy 1.5K Feb 20 20:52 test.c  SYS_write call return 46  SYS_write call with 1, 140693012086784, 53  -rw-r--r-- 1 lxy lxy 5.0K Feb 21 12:19 trace_write.c  SYS_write call return 53

可以看到我们的 ls -l -h 命令中, 发生了四次write系统调用.这里读取寄存器的时候可以用之前

的 PTRACE_PEEKUSER 参数,也可以直接用 PTRACE_PEEKUSER 参数将寄存器的值读取到结构体 user_regs_struct ,

该结构体定义在 sys/user.h 中.

程序中WIFEXITED函数(宏)用来检查子进程是被ptrace暂停的还是准备退出, 可以通过 wait(2) 的man page

查看详细的内容. 其中还有个值得一提的参数是 PTRACE_SYSCALL ,其作用是使内核在子进程进入和

退出系统调用时都将其暂停, 等价于调用 PTRACE_CONT 并且在下一个 entry/exit 系统调用前暂停.

修改系统调用参数

假设我们现在要修改write系统调用的参数从而修改打印的内容,根据文档可知,其第二个参数为write字符串的地址,第三个参数为字符串的字节数,因此我们可以用:

    val = ptrace(PTRACE_PEEKDATA, child, addr, NULL);

来得到字符串的内容. 值得一提的是, 由于ptrace的返回值是long型的,因此一次最多只能读取sizeof(long)个字节 的数据,可以多次读取 addr + i*sizeof(long) 然后合并得到最终的字符串内容. 在64bit系统下一次可以读取64/8=8字节的数据.

修改字符串后,可以用:

    ptrace(PTRACE_POKEDATA, child, addr, data);

来更新系统调用参数. 同样一次只能更新8字节,因此需要分多次将结果放到long型的data里,再按顺序更新到 addr + i*sizeof(long) 中.

一个读取参数字符串值的例子如下:

#define long_size  sizeof(long);  void getdata(pid_t child, long addr,               char *str, int len) {         char *laddr;      int i, j;      union u {              long val;              char chars[long_size];      }data;      i = 0;      j = len / long_size;      laddr = str;      while(i < j) {          data.val = ptrace(PTRACE_PEEKDATA,                            child, addr + i * 8,                            NULL);          if(data.val == -1)              if(errno) {                  printf("READ error: %s\n", strerror(errno));              }          memcpy(laddr, data.chars, long_size);          ++i;          laddr += long_size;      }      j = len % long_size;      if(j != 0) {          data.val = ptrace(PTRACE_PEEKDATA,                            child, addr + i * 8,                            NULL);          memcpy(laddr, data.chars, j);      }      str[len] = '\0';  }

值得一提的是union类型可以用来很方便地往64bit寄存器(long型)读写和转换其他类型(如char)格式的数据.

追踪其他程序的进程

上面举的例子都是追踪并修改声明了 PTRACE_TRACEME 的子进程的,那么我们能否追踪其他独立的正在运行的进程呢?

使用 PTRACE_ATTACH 参数就可以追踪正在运行的程序:

ptrace(PTRACE_ATTACH, pid, NULL, NULL)

其中pid位想要追踪的进程的进程id. 当前进程会给被追踪进程发送 SIGSTOP 信号,但不要求立即停止,

一般会等待子进程完成当前调用. ATTACH之后就和操作fork出来的TRACEME子进程一样操作就好了.

如果要结束追踪,则再调用 PTRACE_DETACH 即可.

动态注入指令

用过gdb等调试器的人都知道,debugger工具可以给程序打断点和单步运行等. 这些功能其实也能用ptrace实现,

其原理就是ATTACH并追踪正在运行的进程, 读取其指令寄存器IR(32bit系统为%eip, 64位系统为%rip)的内容,

备份后替换成目标指令,再使其返回运行;此时被追踪进程就会执行我们替换的指令. 运行完注入的指令之后,

我们再恢复原进程的IR,从而达到改变原程序运行逻辑的目的. talk is cheap, 先写个循环打印的程序:

//victim.c  int main() {      while(1) {          printf("Hello, ptrace! [pid:%d]\n", getpid());          sleep(2);      }      return 0;  }

程序运行后会每隔2秒会打印到终端.然后再另外编写一个程序:

//attach.c  int main(int argc, char *argv[]) {      if(argc!=2) {          printf("Usage: %s pid\n", argv[0]);          return 1;      }      pid_t victim = atoi(argv[1]);      struct user_regs_struct regs;      /* int 0x80, int3 */      unsigned char code[] = {0xcd,0x80,0xcc,0x00,0,0,0,0};      char backup[8];      ptrace(PTRACE_ATTACH, victim, NULL, NULL);      long inst;        wait(NULL);      ptrace(PTRACE_GETREGS, victim, NULL, &regs);      inst = ptrace(PTRACE_PEEKTEXT, victim, regs.rip, NULL);      printf("Victim: EIP:0x%llx INST: 0x%lx\n", regs.rip, inst);        /* Copy instructions into a backup variable */      getdata(victim, regs.rip, backup, 7);      /* Put the breakpoint */      putdata(victim, regs.rip, code, 7);      /* Let the process continue and execute the int 3 instruction */      ptrace(PTRACE_CONT, victim, NULL, NULL);        wait(NULL);      printf("Press Enter to continue ptraced process.\n");      getchar();      putdata(victim, regs.rip, backup, 7);      ptrace(PTRACE_SETREGS, victim, NULL, &regs);        ptrace(PTRACE_CONT, victim, NULL, NULL);      ptrace(PTRACE_DETACH, victim, NULL, NULL);      return 0;  }

运行后会将一直循环输出的进程暂停, 再按回车使得进程恢复循环输出. 其中putdata和getdata在上文中已经介绍过了.

我们用之前替换寄存器内容的方法,将%rip的内容修改为 int 3 的机器码, 使得对应进程暂停执行;

恢复寄存器状态时使用的是 PTRACE_SETREGS 参数. 值得一提的是对于不同的处理器架构, 其使用的寄存器名称

也不尽相同, 在不同的机器上允许时代码也要作相应的修改.

这里注入的代码长度只有8个字节, 而且是用shellcode的格式注入, 但实际中我们可以在目标进程中动态加载库文件(.so),

包括标准库文件(如libc.so)和我们自己编译的库文件, 从而可以通过传递函数地址和参数来进行复杂的注入,限于篇幅暂不细说.

不过需要注意的是动态链接库挂载的地址是动态确定的, 可以在 /proc/$pid/maps 文件中查看, 其中$pid为进程id.

参考资料

博客地址:

欢迎交流,文章转载请注明出处.

</div>

 本文由用户 ggaq6793 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
 转载本站原创文章,请注明出处,并保留原始链接、图片水印。
 本站是一个以用户分享为主的开源技术平台,欢迎各类分享!
 本文地址:https://www.open-open.com/lib/view/open1456102452433.html
Linux 寄存器