| 注册
请输入搜索内容

热门搜索

Java Linux MySQL PHP JavaScript Hibernate jQuery Nginx
mpnl7080
9年前发布

Elasticsearch 2.2.0 分词篇:中文分词

来自: http://my.oschina.net/secisland/blog/617822


    在Elasticsearch中,内置了很多分词器(analyzers),但默认的分词器对中文的支持都不是太好。所以需要单独安装插件来支持,比较常用的是中科院 ICTCLAS的smartcn和IKAnanlyzer效果还是不错的,但是目前IKAnanlyzer还不支持最新的Elasticsearch2.2.0版本,但是smartcn中文分词器默认官方支持,它提供了一个中文或混合中文英文文本的分析器。支持最新的2.2.0版本版本。但是smartcn不支持自定义词库,作为测试可先用一下。后面的部分介绍如何支持最新的版本。

smartcn

安装分词:plugin install analysis-smartcn

卸载:plugin remove analysis-smartcn

测试:

请求:POST http://127.0.0.1:9200/_analyze/

{    "analyzer": "smartcn",    "text": "联想是全球最大的笔记本厂商"  }

返回结果:

{      "tokens": [          {              "token": "联想",               "start_offset": 0,               "end_offset": 2,               "type": "word",               "position": 0          },           {              "token": "是",               "start_offset": 2,               "end_offset": 3,               "type": "word",               "position": 1          },           {              "token": "全球",               "start_offset": 3,               "end_offset": 5,               "type": "word",               "position": 2          },           {              "token": "最",               "start_offset": 5,               "end_offset": 6,               "type": "word",               "position": 3          },           {              "token": "大",               "start_offset": 6,               "end_offset": 7,               "type": "word",               "position": 4          },           {              "token": "的",               "start_offset": 7,               "end_offset": 8,               "type": "word",               "position": 5          },           {              "token": "笔记本",               "start_offset": 8,               "end_offset": 11,               "type": "word",               "position": 6          },           {              "token": "厂商",               "start_offset": 11,               "end_offset": 13,               "type": "word",               "position": 7          }      ]  }

作为对比,我们看一下标准的分词的结果,在请求中巴smartcn,换成standard

然后看返回结果:

{      "tokens": [          {              "token": "联",               "start_offset": 0,               "end_offset": 1,               "type": "<IDEOGRAPHIC>",               "position": 0          },           {              "token": "想",               "start_offset": 1,               "end_offset": 2,               "type": "<IDEOGRAPHIC>",               "position": 1          },           {              "token": "是",               "start_offset": 2,               "end_offset": 3,               "type": "<IDEOGRAPHIC>",               "position": 2          },           {              "token": "全",               "start_offset": 3,               "end_offset": 4,               "type": "<IDEOGRAPHIC>",               "position": 3          },           {              "token": "球",               "start_offset": 4,               "end_offset": 5,               "type": "<IDEOGRAPHIC>",               "position": 4          },           {              "token": "最",               "start_offset": 5,               "end_offset": 6,               "type": "<IDEOGRAPHIC>",               "position": 5          },           {              "token": "大",               "start_offset": 6,               "end_offset": 7,               "type": "<IDEOGRAPHIC>",               "position": 6          },           {              "token": "的",               "start_offset": 7,               "end_offset": 8,               "type": "<IDEOGRAPHIC>",               "position": 7          },           {              "token": "笔",               "start_offset": 8,               "end_offset": 9,               "type": "<IDEOGRAPHIC>",               "position": 8          },           {              "token": "记",               "start_offset": 9,               "end_offset": 10,               "type": "<IDEOGRAPHIC>",               "position": 9          },           {              "token": "本",               "start_offset": 10,               "end_offset": 11,               "type": "<IDEOGRAPHIC>",               "position": 10          },           {              "token": "厂",               "start_offset": 11,               "end_offset": 12,               "type": "<IDEOGRAPHIC>",               "position": 11          },           {              "token": "商",               "start_offset": 12,               "end_offset": 13,               "type": "<IDEOGRAPHIC>",               "position": 12          }      ]  }

    从中可以看出,基本上不能使用,就是一个汉字变成了一个词了。

本文由赛克 蓝德(secisland)原创,转载请标明作者和出处。

IKAnanlyzer支持2.2.0版本

    目前github上最新的版本只支持Elasticsearch2.1.1,路径为https://github.com/medcl/elasticsearch-analysis-ik。但现在最新的Elasticsearch已经到2.2.0了所以要经过处理一下才能支持。

1、下载源码,下载完后解压到任意目录,然后修改elasticsearch-analysis-ik-master目录下的pom.xml文件。找到<elasticsearch.version>行,然后把后面的版本号修改成2.2.0。

2、编译代码mvn package。

3、编译完成后会在target\releases生成elasticsearch-analysis-ik-1.7.0.zip文件。

4、解压文件到Elasticsearch/plugins目录下。

5、修改配置文件增加一行:index.analysis.analyzer.ik.type : "ik"

6、重启Elasticsearch。

测试:和上面的请求一样,只是把分词替换成ik

返回的结果:

{      "tokens": [          {              "token": "联想",               "start_offset": 0,               "end_offset": 2,               "type": "CN_WORD",               "position": 0          },           {              "token": "全球",               "start_offset": 3,               "end_offset": 5,               "type": "CN_WORD",               "position": 1          },           {              "token": "最大",               "start_offset": 5,               "end_offset": 7,               "type": "CN_WORD",               "position": 2          },           {              "token": "笔记本",               "start_offset": 8,               "end_offset": 11,               "type": "CN_WORD",               "position": 3          },           {              "token": "笔记",               "start_offset": 8,               "end_offset": 10,               "type": "CN_WORD",               "position": 4          },           {              "token": "笔",               "start_offset": 8,               "end_offset": 9,               "type": "CN_WORD",               "position": 5          },           {              "token": "记",               "start_offset": 9,               "end_offset": 10,               "type": "CN_CHAR",               "position": 6          },           {              "token": "本厂",               "start_offset": 10,               "end_offset": 12,               "type": "CN_WORD",               "position": 7          },           {              "token": "厂商",               "start_offset": 11,               "end_offset": 13,               "type": "CN_WORD",               "position": 8          }      ]  }

从中可以看出,两个分词器分词的结果还是有区别的。

扩展词库,在config\ik\custom下在mydict.dic中增加需要的词组,然后重启Elasticsearch,需要注意的是文件编码是UTF-8 无BOM格式编码

比如增加了赛克蓝德单词。然后再次查询:

请求:POST http://127.0.0.1:9200/_analyze/

参数:

{    "analyzer": "ik",    "text": "赛克蓝德是一家数据安全公司"  }

返回结果:

{      "tokens": [          {              "token": "赛克蓝德",               "start_offset": 0,               "end_offset": 4,               "type": "CN_WORD",               "position": 0          },           {              "token": "克",               "start_offset": 1,               "end_offset": 2,               "type": "CN_WORD",               "position": 1          },           {              "token": "蓝",               "start_offset": 2,               "end_offset": 3,               "type": "CN_WORD",               "position": 2          },           {              "token": "德",               "start_offset": 3,               "end_offset": 4,               "type": "CN_CHAR",               "position": 3          },           {              "token": "一家",               "start_offset": 5,               "end_offset": 7,               "type": "CN_WORD",               "position": 4          },           {              "token": "一",               "start_offset": 5,               "end_offset": 6,               "type": "TYPE_CNUM",               "position": 5          },           {              "token": "家",               "start_offset": 6,               "end_offset": 7,               "type": "COUNT",               "position": 6          },           {              "token": "数据",               "start_offset": 7,               "end_offset": 9,               "type": "CN_WORD",               "position": 7          },           {              "token": "安全",               "start_offset": 9,               "end_offset": 11,               "type": "CN_WORD",               "position": 8          },           {              "token": "公司",               "start_offset": 11,               "end_offset": 13,               "type": "CN_WORD",               "position": 9          }      ]  }

从上面的结果可以看出已经支持赛克蓝德单词了。

    赛克蓝德(secisland)后续会逐步对Elasticsearch的最新版本的各项功能进行分析,近请期待。也欢迎加入secisland公众号进行关注

 本文由用户 mpnl7080 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
 转载本站原创文章,请注明出处,并保留原始链接、图片水印。
 本站是一个以用户分享为主的开源技术平台,欢迎各类分享!
 本文地址:https://www.open-open.com/lib/view/open1455894700058.html
ElasticSearch 搜索引擎