redis的pipeline
来自: https://segmentfault.com/a/1190000004448722
序
本文主要展示怎么在SpringDataRedis中使用pipeline。
pipeline概要
正常情况下,每个请求命令发出后client通常会阻塞并等待redis服务端处理,redis服务端处理完后将结果返回给client。当client使用pipeline发送命令时,redis server必须部分请求放到队列中(使用内存)执行完毕后一次性发送结果。在一定程度上,可以较大的提升性能,性能提升的原因主要是TCP链接中较少了“交互往返”的时间。
使用
@Test public void pipeline(){ List<Object> results = template.executePipelined(new RedisCallback<Object>() { public Object doInRedis(RedisConnection connection) throws DataAccessException { StringRedisConnection stringRedisConn = (StringRedisConnection)connection; for(int i=0; i< 10; i++) { stringRedisConn.lPush("myqueue","item"+i); } return null; } }); results.stream().forEach(System.out::println); }
输出
查看redis
127.0.0.1:6379> lrange myqueue 0 -1 1) "item9" 2) "item8" 3) "item7" 4) "item6" 5) "item5" 6) "item4" 7) "item3" 8) "item2" 9) "item1" 10) "item0"
如果不需要返回结果,则可以使用redisTemplate的execute,然后传入true给pipeline参数。
executePipelined源码
public List<Object> executePipelined(final RedisCallback<?> action, final RedisSerializer<?> resultSerializer) { return execute(new RedisCallback<List<Object>>() { public List<Object> doInRedis(RedisConnection connection) throws DataAccessException { connection.openPipeline(); boolean pipelinedClosed = false; try { Object result = action.doInRedis(connection); if (result != null) { throw new InvalidDataAccessApiUsageException( "Callback cannot return a non-null value as it gets overwritten by the pipeline"); } List<Object> closePipeline = connection.closePipeline(); pipelinedClosed = true; return deserializeMixedResults(closePipeline, resultSerializer, resultSerializer, resultSerializer); } finally { if (!pipelinedClosed) { connection.closePipeline(); } } } }); }
redis自带的benchmark
redis自带了redis-benchmark,可以用来测试redis的性能。不给定任何参数的情况下默认使用50个客户端来进行性能测试。redis-benchmark不会处理执行命令所获得的命令回复,所以它节约了大量用于对命令回复进行语法分析的时间。
redis-benchmark -c 1 -q PING_INLINE: 58823.53 requests per second PING_BULK: 60642.81 requests per second SET: 59772.86 requests per second GET: 60096.15 requests per second INCR: 60532.69 requests per second LPUSH: 60204.70 requests per second LPOP: 58309.04 requests per second SADD: 60350.03 requests per second SPOP: 59066.75 requests per second LPUSH (needed to benchmark LRANGE): 60313.63 requests per second LRANGE_100 (first 100 elements): 37341.30 requests per second LRANGE_300 (first 300 elements): 17934.00 requests per second LRANGE_500 (first 450 elements): 13208.29 requests per second LRANGE_600 (first 600 elements): 10604.45 requests per second MSET (10 keys): 54171.18 requests per second
参考
本文由用户 uj3353 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!