| 注册
请输入搜索内容

热门搜索

Java Linux MySQL PHP JavaScript Hibernate jQuery Nginx
961408017
9年前发布

Spark Tungsten-sort Based Shuffle 分析

来自: https://community.qingcloud.com/topic/341/spark-tungsten-sort-based-shuffle-分析

Tungsten-sort 算不得一个全新的shuffle 方案,它在特定场景下基于类似现有的Sort Based Shuffle处理流程,对内存/CPU/Cache使用做了非常大的优化。带来高效的同时,也就限定了自己的使用场景。如果Tungsten-sort 发现自己无法处理,则会自动使用 Sort Based Shuffle进行处理。

前言

看这篇文章前,建议你先简单看看 Spark Sort Based Shuffle内存分析

Tungsten 中文是 钨丝 的意思。 Tungsten Project 是 Databricks 公司提出的对Spark优化内存和CPU使用的计划,该计划初期似乎对Spark SQL优化的最多。不过部分RDD API 还有Shuffle也因此受益。

简述

Tungsten-sort优化点主要在三个方面:

  1. 直接在serialized binary data上sort而不是java objects,减少了memory的开销和GC的overhead。
  2. 提供cache-efficient sorter,使用一个8bytes的指针,把排序转化成了一个指针数组的排序。
  3. spill的merge过程也无需反序列化即可完成

这些优化的实现导致引入了一个新的内存管理模型,类似OS的Page,对应的实际数据结构为 MemoryBlock ,支持off-heap 以及 in-heap 两种模式。为了能够对Record 在这些MemoryBlock进行定位,引入了Pointer(指针)的概念。

如果你还记得Sort Based Shuffle里存储数据的对象 PartitionedAppendOnlyMap ,这是一个放在JVM heap里普通对象,在Tungsten-sort中,他被替换成了类似操作系统内存页的对象。如果你无法申请到新的Page,这个时候就要执行spill操作,也就是写入到磁盘的操作。具体触发条件,和Sort Based Shuffle 也是类似的。

开启条件

Spark 默认开启的是Sort Based Shuffle,想要打开Tungsten-sort ,请设置

spark.shuffle.manager=tungsten-sort

对应的实现类是:

org.apache.spark.shuffle.unsafe.UnsafeShuffleManager

名字的来源是因为使用了大量JDK Sun Unsafe API。

当且仅当下面条件都满足时,才会使用新的Shuffle方式:

  • Shuffle dependency 不能带有aggregation 或者输出需要排序
  • Shuffle 的序列化器需要是 KryoSerializer 或者 Spark SQL's 自定义的一些序列化方式.
  • Shuffle 文件的数量不能大于 16777216
  • 序列化时,单条记录不能大于 128 MB

可以看到,能使用的条件还是挺苛刻的。

这些限制来源于哪里

参看如下代码,page的大小:

this.pageSizeBytes = (int) Math.min(                    PackedRecordPointer.MAXIMUM_PAGE_SIZE_BYTES,                   shuffleMemoryManager.pageSizeBytes());

这就保证了页大小不超过 PackedRecordPointer.MAXIMUM_PAGE_SIZE_BYTES 的值,该值就被定义成了128M。

而产生这个限制的具体设计原因,我们还要仔细分析下Tungsten的内存模型:

这张图其实画的是 on-heap 的内存逻辑图,其中 #Page 部分为13bit, Offset 为51bit,你会发现 2^51 >>128M的。但是在Shuffle的过程中,对51bit 做了压缩,使用了27bit,具体如下:

 [24 bit partition number][13 bit memory page number][27 bit offset in page]

这里预留出的24bit给了partition number,为了后面的排序用。上面的好几个限制其实都是因为这个指针引起的:

  1. 一个是partition 的限制,前面的数字 16777216 就是来源于partition number 使用24bit 表示的。
  2. 第二个是page number
  3. 第三个是偏移量,最大能表示到2^27=128M。那一个task 能管理到的内存是受限于这个指针的,最多是 2^13 * 128M 也就是1TB左右。

有了这个指针,我们就可以定位和管理到off-heap 或者 on-heap里的内存了。这个模型还是很漂亮的,内存管理也非常高效,记得之前的预估 PartitionedAppendOnlyMap 的内存是非常困难的,但是通过现在的内存管理机制,是非常快速并且精确的。

对于第一个限制,那是因为后续Shuffle Write的sort 部分,只对前面24bit的partiton number 进行排序,key的值没有被编码到这个指针,所以没办法进行ordering

同时,因为整个过程是追求不反序列化的,所以不能做aggregation。

Shuffle Write

核心类:

 org.apache.spark.shuffle.unsafe.UnsafeShuffleWriter

数据会通过 UnsafeShuffleExternalSorter.insertRecordIntoSorter 一条一条写入到 serOutputStream 序列化输出流。

这里消耗内存的地方是

 serBuffer = new MyByteArrayOutputStream(1024 * 1024)

默认是1M,类似于Sort Based Shuffle 中的 ExternalSorter ,在Tungsten Sort 对应的为 UnsafeShuffleExternalSorter ,记录序列化后就通过 sorter.insertRecord 方法放到sorter里去了。

这里sorter 负责申请Page,释放Page,判断是否要进行spill都这个类里完成。代码的架子其实和Sort Based 是一样的。

(另外,值得注意的是,这张图里进行spill操作的同时检查内存可用而导致的Exeception 的bug 已经在1.5.1版本被修复了,忽略那条路径)

内存是否充足的条件依然 shuffleMemoryManager 来决定,也就是所有task shuffle 申请的Page内存总和不能大于下面的值:

 ExecutorHeapMemeory * 0.2 * 0.8

上面的数字可通过下面两个配置来更改:

spark.shuffle.memoryFraction=0.2  spark.shuffle.safetyFraction=0.8

UnsafeShuffleExternalSorter 负责申请内存,并且会生成该条记录最后的逻辑地址,也就前面提到的 Pointer。

接着Record 会继续流转到 UnsafeShuffleInMemorySorter 中,这个对象维护了一个指针数组:

  private long[] pointerArray;

数组的初始大小为 4096,后续如果不够了,则按每次两倍大小进行扩充。

假设100万条记录,那么该数组大约是8M 左右,所以其实还是很小的。一旦spill后该 UnsafeShuffleInMemorySorter 就会被赋为null,被回收掉。

我们回过头来看spill,其实逻辑上也异常简单了, UnsafeShuffleInMemorySorter 会返回一个迭代器,该迭代器粒度每个元素就是一个指针,然后到根据该指针可以拿到真实的record,然后写入到磁盘,因为这些record 在一开始进入 UnsafeShuffleExternalSorter 就已经被序列化了,所以在这里就纯粹变成写字节数组了。形成的结构依然和Sort Based Shuffle 一致,一个文件里不同的partiton的数据用fileSegment来表示,对应的信息存在一个index文件里。

另外写文件的时候也需要一个 buffer :

 spark.shuffle.file.buffer = 32k

另外从内存里拿到数据放到DiskWriter,这中间还要有个中转,是通过

 final byte[] writeBuffer = new byte[DISK_WRITE_BUFFER_SIZE=1024 * 1024];

来完成的,都是内存,所以很快。

Task结束前,我们要做一次 mergeSpills 操作,然后形成一个shuffle 文件。这里面其实也挺复杂的,

如果开启了

 `spark.shuffle.unsafe.fastMergeEnabled=true`

并且没有开启

`spark.shuffle.compress=true`

或者压缩方式为:

 LZFCompressionCodec

则可以非常高效的进行合并,叫做 transferTo 。不过无论是什么合并,都不需要进行反序列化。

Shuffle Read

Shuffle Read 完全复用 HashShuffleReader ,具体参看 Sort-Based Shuffle。

总结

我个人感觉,Tungsten-sort 实现了内存的自主管理,管理方式模拟了操作系统的方式,通过Page可以使得大量的record被顺序存储在内存,整个shuffle write 排序的过程只需要对指针进行运算(二进制排序),并且无需反序列化,整个过程非常高效,对于减少GC,提高内存访问效率,提高CPU使用效率确实带来了明显的提升。

原文链接: http://www.jianshu.com/p/d328c96aebfd

Xuanwo@QingCloud

</div>

 本文由用户 961408017 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
 转载本站原创文章,请注明出处,并保留原始链接、图片水印。
 本站是一个以用户分享为主的开源技术平台,欢迎各类分享!
 本文地址:https://www.open-open.com/lib/view/open1454288089089.html
Spark 分布式/云计算/大数据