深度学习框架:MXNet
MXNet是深学习框架,设计效率和灵活性。
cxxnet借鉴了很多caffe的思想。相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu和cpu代码只用写一份,分布式接口也很干净。
mxnet是cxxnet的下一代,目前实现了cxxnet所有功能,但借鉴了minerva/torch7/theano,加入更多新的功能。
</div>
mxnet是cxxnet的下一代,目前实现了cxxnet所有功能,但借鉴了minerva/torch7/theano,加入更多新的功能。
- ndarray编程接口,类似matlab/numpy.ndarray/torch.tensor。独有优势在于通过背后的engine可以在性能上和内存使用上更优
- symbolic接口。这个可以使得快速构建一个神经网络,和自动求导。
- 更多binding 目前支持比较好的是python,马上会有julia和R
- 更加方便的多卡和多机运行
- 性能上更优。目前mxnet比cxxnet快40%,而且gpu内存使用少了一半。
特性
- Open sourced design note on useful insights that can re-used by general DL projects.
- Flexible configuration, for arbitrary computation graph.
- Mix and Maximize good flavours of programmingto maximize flexibility and efficiency.
- Lightweight, memory efficient and portable to smart devices.
- Scales up to multi GPUs and distributed setting with auto parallelism.
- Support python, R, C++, Julia,
- Cloud friendly, and directly compatible with S3, HDFS, AZure
本文由用户 jopen 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!