深度学习 Deep Learning 学习资料大全
入门阅读
- deep learning较全面的入门介绍19
- 浅谈Deep Learning的基本思想和方法3
- 机器学习——深度学习(Deep Learning)2
- deep learning tutorials3
- 一篇blog:deep learning2,3
- 一些论文介绍3
代码/工具
- Theano - Deep Learning工具5
- senna (论文1) Deep Learning在自然语言理解中的应用,研读Senna的源代码是个很好的起点。C代码只有3500行,实现了POS/NER/SRL/Syntactical Parsing诸多功能。
理论&论文
- Yoshua Bengio, Learning Deep Architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009
- ICML 2009 Workshop on Learning Feature Hierarchies的引用列表
- Geoff Hinton's refs
- Rank 1
Hinton's homepage
http://www.cs.toronto.edu/~hinton/1
Reducing the dimensionality of data with neural networks.
http://www.cs.toronto.edu/~hinton/science.pdf
A practical guide to training restricted Boltzmann machines
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
video talks
http://videolectures.net/geoffrey_e_hinton/ - Rank 2
Bengio's homepage
http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html
Learning Deep Architectures for AIhttp://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
Representation Learning: A Review and New Perspectives
http://arxiv.org/abs/1206.5538
Video talks
http://videolectures.net/yoshua_bengio/ - Rank 3
Andrew Ng
http://ai.stanford.edu/~ang/1 - Related Events
http://deeplearning.net/events/
CVPR 2012 deep learning workshop
http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/
其他资源
本文由用户 jopen 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!