| 注册
请输入搜索内容

热门搜索

Java Linux MySQL PHP JavaScript Hibernate jQuery Nginx
jopen
10年前发布

Hadoop伪分布配置与基于Eclipse开发环境搭建

1、开发配置环境:

开发环境:Win764bit+Eclipsekepler service release 2

配置环境:Ubuntu Server 14.04.1 LTS64-bit only

辅助工具:WinSCP + Putty

Hadoop版本:2.5.0

HadoopEclipse开发插件(2.x版本适用):http://pan.baidu.com/s/1eQy49sm

服务器端JDK版本:OpenJDK7.0

 

以上所有工具请自行下载安装。

2Hadoop服务端配置(Master节点)

  最近一直在摸索Hadoop2的配置,因为Hadoop2对原有的一些框架API做了调整,但也还是兼容旧版本的(包括配置)。像我这种就喜欢用新的东西的人,当然要尝一下鲜了,现在网上比较少新版本的配置教程,那么下面我就来分享一下我自己的实战经验,如有不正确的地欢迎指正:)

  假设我们已经成功地安装了Ubuntu ServerOpenJDKSSH,如果还没有安装的话请先安装,自己网上找一下教程,这里我就说一下SSH的无口令登陆设置。首先通过

       

  $ ssh localhost

测试一下自己有没有设置好无口令登陆,如果没有设置好,系统将要求你输入密码,通过下面的设置可以实现无口令登陆,具体原理请百度谷歌:

         

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa  $ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

  其次是Hadoop安装(假设已经安装好OpenJDK以及配置好了环境变量),到Hadoop官网下载一个Hadoop2.5.0版本的下来,好像大概有100Mtar.gz包,下载 下来后自行解压,我的是放在/usr/mywind下面,Hadoop主目录完整路径是/usr/mywind/hadoop,这个路径根据你个人喜好放吧。

  解压完后,打开hadoop主目录下的etc/hadoop/hadoop-env.sh文件,在最后面加入下面内容:

# set to the root of your Java installation    export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64     # Assuming your installation directory is /usr/mywind/hadoop  export HADOOP_PREFIX=/usr/mywind/hadoop

为了方便起见,我建设把Hadoopbin目录及sbin目录也加入到环境变量中,我是直接修改了Ubuntu/etc/environment文件,内容如下:

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/usr/lib/jvm/java-7-openjdk-amd64/bin:/usr/mywind/hadoop/bin:/usr/mywind/hadoop/sbin"  JAVA_HOME="/usr/lib/jvm/java-7-openjdk-amd64"  CLASSPATH=".:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar"

也可以通过修改profile来完成这个设置,看个人习惯咯。假如上面的设置你都完成了,可以在命令行里面测试一下Hadoop命令,如下图:

Hadoop伪分布配置与基于Eclipse开发环境搭建

假如你能看到上面的结果,恭喜你,Hadoop安装完成了。接下来我们可以进行伪分布配置(Hadoop可以在伪分布模式下运行单结点)。

接下来我们要配置的文件有四个,分别是/usr/mywind/hadoop/etc/hadoop目录下的yarn-site.xmlmapred-site.xmlhdfs-site.xmlcore-site.xml(注意:这个版本下默认没有yarn-site.xml文件,但有个yarn-site.xml.properties文件,把后缀修改成前者即可),关于yarn新特性可以参考官网或者这个文章http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/

首先是core-site.xml配置HDFS地址及临时目录(默认的临时目录在重启后会删除):

<configuration>      <property>          <name>fs.defaultFS</name>          <value>hdfs://192.168.8.184:9000</value>           <description>same as fs.default.name</description>      </property>       <property>         <name>hadoop.tmp.dir</name>         <value>/usr/mywind/tmp</value>          <description>A base for other temporary directories.</description>       </property>  </configuration>

然后是hdfs-site.xml配置集群数量及其他一些可选配置比如NameNode目录、DataNode目录等等:

<configuration>       <property>          <name>dfs.namenode.name.dir</name>          <value>/usr/mywind/name</value>          <description>same as dfs.name.dir</description>       </property>       <property>          <name>dfs.datanode.data.dir</name>          <value>/usr/mywind/data</value>          <description>same as dfs.data.dir</description>       </property>       <property>          <name>dfs.replication</name>          <value>1</value>          <description>same as old frame,recommend set the value as the cluster DataNode host numbers!</description>       </property>  </configuration>

接着是mapred-site.xml配置启用yarn框架:

<configuration>      <property>          <name>mapreduce.framework.name</name>          <value>yarn</value>      </property>  </configuration>

最后是yarn-site.xml配置NodeManager:

<configuration>   <!-- Site specific YARN configuration properties -->     <property>            <name>yarn.nodemanager.aux-services</name>            <value>mapreduce_shuffle</value>     </property>   </configuration>

注意,网上的旧版本教程可能会把value写成mapreduce.shuffle,这个要特别注意一下的,至此我们所有的文件配置都已经完成了,下面进行HDFS文件系统进行格式化:

           $ hdfs namenode -format

然后启用NameNodeDataNode进程:

         $ start-yarn.sh

然后创建hdfs文件目录

$ hdfs dfs -mkdir /user  $ hdfs dfs -mkdir /user/a01513

注意,这个a01513是我在Ubuntu上的用户名,最好保持与系统用户名一致,据说不一致会有许多权限等问题,我之前试过改成其他名字,报错,实在麻烦就改成跟系统用户名一致吧。

然后把要测试的输入文件放在文件系统中:

        

$ hdfs dfs -put /usr/mywind/psa input

Hadoop伪分布配置与基于Eclipse开发环境搭建

文件内容是Hadoop经典的天气例子的数据:

12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+001212345678903456  12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+011212345678903456  12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+021212345678903456  12345679867623119010123456798676231190101234567986762311901012345679867623119010123456+003212345678903456  12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+004212345678903456  12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+010212345678903456  12345679867623119010123456798676231190201234567986762311901012345679867623119010123456+011212345678903456  12345679867623119010123456798676231190501234567986762311901012345679867623119010123456+041212345678903456  12345679867623119010123456798676231190501234567986762311901012345679867623119010123456+008212345678903456

把文件拷贝到HDFS目录之后,我们可以通过浏览器查看相关的文件及一些状态:

http://192.168.8.184:50070/

这里的IP地址根据你实际的Hadoop服务器地址啦。

好吧,我们所有的Hadoop后台服务搭建跟数据准备都已经完成了,那么我们的M/R程序也要开始动手写了,不过在写当然先配置开发环境了。

3、基于EclipseHadoop2.x开发环境配置

关于JDKECLIPSE的安装我就不再介绍了,相信能玩Hadoop的人对这种配置都已经再熟悉不过了,如果实在不懂建议到谷歌百度去搜索一下教程。假设你已经把HadoopEclipse插件下载下来了,然后解压把jar文件放到Eclipseplugins文件夹里面:

Hadoop伪分布配置与基于Eclipse开发环境搭建

重启Eclipse即可。

然后我们再安装HadoopWin7下,在这不再详细说明,跟安装JDK大同小异,在这个例子中我安装到了E:\hadoop

启动Eclipse,点击菜单栏的【Windows/窗口】→【Preferences/首选项】→【Hadoop Map/Reduce,Hadoop Installation Directory设置成开发机上的Hadoop主目录:

Hadoop伪分布配置与基于Eclipse开发环境搭建

点击OK

开发环境配置完成,下面我们可以新建一个测试Hadoop项目,右键【NEW/新建】→【Others、其他】,选择Map/Reduce Project

Hadoop伪分布配置与基于Eclipse开发环境搭建

 

输入项目名称点击【Finish/完成】:

Hadoop伪分布配置与基于Eclipse开发环境搭建

创建完成后可以看到如下目录:

Hadoop伪分布配置与基于Eclipse开发环境搭建

然后在SRC下建立下面包及类:

Hadoop伪分布配置与基于Eclipse开发环境搭建

以下是代码内容:

TestMapper.java

package com.my.hadoop.mapper;     import java.io.IOException;     import org.apache.commons.logging.Log;  import org.apache.commons.logging.LogFactory;  import org.apache.hadoop.io.IntWritable;  import org.apache.hadoop.io.LongWritable;  import org.apache.hadoop.io.Text;  import org.apache.hadoop.mapred.MapReduceBase;  import org.apache.hadoop.mapred.Mapper;  import org.apache.hadoop.mapred.OutputCollector;  import org.apache.hadoop.mapred.Reporter;     public class TestMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {           private static final int MISSING = 9999;           private static final Log LOG = LogFactory.getLog(TestMapper.class);               public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,Reporter reporter)                 throws IOException {               String line = value.toString();               String year = line.substring(15, 19);               int airTemperature;               if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs                 airTemperature = Integer.parseInt(line.substring(88, 92));               } else {                 airTemperature = Integer.parseInt(line.substring(87, 92));               }               LOG.info("loki:"+airTemperature);               String quality = line.substring(92, 93);               LOG.info("loki2:"+quality);               if (airTemperature != MISSING && quality.matches("[012459]")) {                 LOG.info("loki3:"+quality);                 output.collect(new Text(year), new IntWritable(airTemperature));               }             }     }

TestReducer.java

package com.my.hadoop.reducer;     import java.io.IOException;  import java.util.Iterator;     import org.apache.hadoop.io.IntWritable;  import org.apache.hadoop.io.Text;  import org.apache.hadoop.mapred.MapReduceBase;  import org.apache.hadoop.mapred.OutputCollector;  import org.apache.hadoop.mapred.Reporter;  import org.apache.hadoop.mapred.Reducer;     public class TestReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {              @Override             public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output,Reporter reporter)                 throws IOException{               int maxValue = Integer.MIN_VALUE;               while (values.hasNext()) {                 maxValue = Math.max(maxValue, values.next().get());               }               output.collect(key, new IntWritable(maxValue));             }     }

TestHadoop.java

package com.my.hadoop.test.main;     import org.apache.hadoop.fs.Path;  import org.apache.hadoop.io.IntWritable;  import org.apache.hadoop.io.Text;  import org.apache.hadoop.mapred.FileInputFormat;  import org.apache.hadoop.mapred.FileOutputFormat;  import org.apache.hadoop.mapred.JobClient;  import org.apache.hadoop.mapred.JobConf;     import com.my.hadoop.mapper.TestMapper;  import com.my.hadoop.reducer.TestReducer;     public class TestHadoop {                     public static void main(String[] args) throws Exception{                                         if (args.length != 2) {                           System.err                               .println("Usage: MaxTemperature <input path> <output path>");                           System.exit(-1);                         }                     JobConf job = new JobConf(TestHadoop.class);               job.setJobName("Max temperature");               FileInputFormat.addInputPath(job, new Path(args[0]));               FileOutputFormat.setOutputPath(job, new Path(args[1]));               job.setMapperClass(TestMapper.class);               job.setReducerClass(TestReducer.class);               job.setOutputKeyClass(Text.class);               job.setOutputValueClass(IntWritable.class);               JobClient.runJob(job);           }            }

为了方便对于HadoopHDFS文件系统操作,我们可以在Eclipse下面的Map/Reduce Locations窗口与Hadoop建立连接,直接右键新建Hadoop连接即可:

Hadoop伪分布配置与基于Eclipse开发环境搭建

连接配置如下:

Hadoop伪分布配置与基于Eclipse开发环境搭建

然后点击完成即可,新建完成后,我们可以在左侧目录中看到HDFS的文件系统目录:

Hadoop伪分布配置与基于Eclipse开发环境搭建

这里不仅可以显示目录结构,还可以对文件及目录进行删除、新增等操作,非常方便。

 

当上面的工作都做好之后,就可以把这个项目导出来了(导成jar文件放到Hadoop服务器上运行):

Hadoop伪分布配置与基于Eclipse开发环境搭建

点击完成,然后把这个testt.jar文件上传到Hadoop服务器(192.168.8.184)上,目录(其实可以放到其他目录,你自己喜欢)是:

/usr/mywind/hadoop/share/hadoop/mapreduce

如下图:

Hadoop伪分布配置与基于Eclipse开发环境搭建

 

4、运行Hadoop程序及查看运行日志

当上面的工作准备好了之后,我们运行自己写的Hadoop程序很简单:

        

$ hadoop  jar  /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar com.my.hadoop.test.main.TestHadoop   input  output

注意这是output文件夹名称不能重复哦,假如你执行了一次,在HDFS文件系统下面会自动生成一个output文件夹,第二次运行时,要么把output文件夹先删除($ hdfs dfs -rmr /user/a01513/output),要么把命令中的output改成其他名称如output1output2等等。

如果看到以下输出结果,证明你的运行成功了:

a01513@hadoop :~$ hadoop jar /usr/mywind/hadoop/share/hadoop/mapreduce/testt.jar                                                                              com.my.hadoop.test.main.TestHadoop input output  14/09/02 11:14:03 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0                                                                             :8032  14/09/02 11:14:04 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0                                                                             :8032  14/09/02 11:14:04 WARN mapreduce.JobSubmitter: Hadoop command-line option parsin                                                                             g not performed. Implement the Tool interface and execute your application with                                                                              ToolRunner to remedy this.  14/09/02 11:14:04 INFO mapred.FileInputFormat: Total input paths to process : 1  14/09/02 11:14:04 INFO mapreduce.JobSubmitter: number of splits:2  14/09/02 11:14:05 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_14                                                                             09386620927_0015  14/09/02 11:14:05 INFO impl.YarnClientImpl: Submitted application application_14                                                                             09386620927_0015  14/09/02 11:14:05 INFO mapreduce.Job: The url to track the job: http://hadoop:80                                                                             88/proxy/application_1409386620927_0015/  14/09/02 11:14:05 INFO mapreduce.Job: Running job: job_1409386620927_0015  14/09/02 11:14:12 INFO mapreduce.Job: Job job_1409386620927_0015 running in uber mode : false  14/09/02 11:14:12 INFO mapreduce.Job:  map 0% reduce 0%  14/09/02 11:14:21 INFO mapreduce.Job:  map 100% reduce 0%  14/09/02 11:14:28 INFO mapreduce.Job:  map 100% reduce 100%  14/09/02 11:14:28 INFO mapreduce.Job: Job job_1409386620927_0015 completed successfully  14/09/02 11:14:29 INFO mapreduce.Job: Counters: 49          File System Counters                  FILE: Number of bytes read=105                  FILE: Number of bytes written=289816                  FILE: Number of read operations=0                  FILE: Number of large read operations=0                  FILE: Number of write operations=0                  HDFS: Number of bytes read=1638                  HDFS: Number of bytes written=10                  HDFS: Number of read operations=9                  HDFS: Number of large read operations=0                  HDFS: Number of write operations=2          Job Counters                  Launched map tasks=2                  Launched reduce tasks=1                  Data-local map tasks=2                  Total time spent by all maps in occupied slots (ms)=14817                  Total time spent by all reduces in occupied slots (ms)=4500                  Total time spent by all map tasks (ms)=14817                  Total time spent by all reduce tasks (ms)=4500                  Total vcore-seconds taken by all map tasks=14817                  Total vcore-seconds taken by all reduce tasks=4500                  Total megabyte-seconds taken by all map tasks=15172608                  Total megabyte-seconds taken by all reduce tasks=4608000          Map-Reduce Framework                  Map input records=9                  Map output records=9                  Map output bytes=81                  Map output materialized bytes=111                  Input split bytes=208                  Combine input records=0                  Combine output records=0                  Reduce input groups=1                  Reduce shuffle bytes=111                  Reduce input records=9                  Reduce output records=1                  Spilled Records=18                  Shuffled Maps =2                  Failed Shuffles=0                  Merged Map outputs=2                  GC time elapsed (ms)=115                  CPU time spent (ms)=1990                  Physical memory (bytes) snapshot=655314944                  Virtual memory (bytes) snapshot=2480295936                  Total committed heap usage (bytes)=466616320          Shuffle Errors                  BAD_ID=0                  CONNECTION=0                  IO_ERROR=0                  WRONG_LENGTH=0                  WRONG_MAP=0                  WRONG_REDUCE=0          File Input Format Counters                  Bytes Read=1430          File Output Format Counters                  Bytes Written=10  a01513@hadoop :~$

 

我们可以到Eclipse查看输出的结果:

Hadoop伪分布配置与基于Eclipse开发环境搭建

或者用命令行查看:

        

   $ hdfs dfs -cat output/part-00000

Hadoop伪分布配置与基于Eclipse开发环境搭建

假如你们发现运行后结果是为空的,可能到日志目录查找相应的log.info输出信息,log目录在:/usr/mywind/hadoop/logs/userlogs 下面。


来自:http://my.oschina.net/lanzp/blog/309078
 

 本文由用户 jopen 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
 转载本站原创文章,请注明出处,并保留原始链接、图片水印。
 本站是一个以用户分享为主的开源技术平台,欢迎各类分享!
 本文地址:https://www.open-open.com/lib/view/open1409640189307.html
Hadoop 分布式/云计算/大数据