高效和分布式的通用数据处理平台:Apache Flink
Apache Flink 是高效和分布式的通用数据处理平台。
Apache Flink 声明式的数据分析开源系统,结合了分布式 MapReduce 类平台的高效,灵活的编程和扩展性。同时在并行数据库发现查询优化方案。
DataSet<String> input = env.readTextFile(inputPath); input.flatMap(new FlatMapFunction() { public void flatMap(String value, Collector out) { for (String s : value.split(" ")) { out.collect(new Tuple2<String, Long>(s, 1L); } } }) .groupBy(0) .sum(1) .writeAsText(outputPath);
System Stack
The Apache Flink stack consists of
- Programming APIs for different languages (Java, Scala) and paradigms (record-oriented, graph-oriented).
- A program optimizer that decides how to execute the program for good performance. It decides among other things about data movement and caching strategies.
- A distributed runtime that executes programs in parallel distributed over many machines.
Flink runs independently from Hadoop, but integrates seamlessly with YARN (Hadoop's next-generation scheduler). Various file systems (including the Hadoop Distributed File System) can act as data sources.
本文由用户 jopen 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!