| 注册
请输入搜索内容

热门搜索

Java Linux MySQL PHP JavaScript Hibernate jQuery Nginx
jopen
10年前发布

一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

原文出处: EMC中文支持论坛   

基本IO Graphs:

IO graphs是一个非常好用的工具。基本的Wireshark IO graph会显示抓包文件中的整体流量情况,通常是以每秒为单位(报文数或字节数)。默认X轴时间间隔是1秒,Y轴是每一时间间隔的报文数。如果想要查看 每秒bit数或byte数,点击“Unit”,在“Y Axis”下拉列表中选择想要查看的内容。这是一种基本的应用,对于查看流量中的波峰/波谷很有帮助。要进一步查看,点击图形中的任意点就会看到报文的细 节。

为了讲解方便,点击示例报文包,或用自己的wireshark点击Statistics – IO Graphs。这个抓包是HTTP下载遇到报文丢失的情况。

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

注意:过滤条件为空,此图形显示所有流量。

这个默认条件下的显示在大多数troubleshooting中并不是非常有用。将Y轴改为bits/tick这样就可以看到每秒的流量。从这张图 可以看到峰值速率是300kbps左右。如果你看到有些地方流量下降为零,那可能是一个出问题的点。这个问题在图上很好发现,但在看报文列表时可能不那么 明显。

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

过滤:

每一个图形都可以应用一个过滤条件。这里创建两个不同的graph,一个HTTP一个ICMP。可以看到过滤条件中Graph 1使用“http”Graph 2使用“icmp”。图中可以看到红色ICMP流量中有些间隙,进一步分析。

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

创建两个图形,一个显示ICMP Echo(Type=8)一个显示ICMP Reply(Type=0)。正常情况下对于每一个echo请求会有一个连续的reply。这里的情况是:

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

可以看到红色脉冲线(icmp type==0 – ICMP Reply)中间有间隙,而整张图中ICMP请求保持连续。这意味着有些reply没有接收到。这是由于报文丢失导致的reply drop。CLI中看到的ping信息如下:

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

常用排错过滤条件:

对于排查网络延时/应用问题有一些过滤条件是非常有用的:

tcp.analysis.lost_segment:表明已经在抓包中看到不连续的序列号。报文丢失会造成重复的ACK,这会导致重传。

tcp.analysis.duplicate_ack:显示被确认过不止一次的报文。大凉的重复ACK是TCP端点之间高延时的迹象。

tcp.analysis.retransmission:显示抓包中的所有重传。如果重传次数不多的话还是正常的,过多重传可能有问题。这通常意味着应用性能缓慢和/或用户报文丢失。

tcp.analysis.window_update:将传输过程中的TCP window大小图形化。如果看到窗口大小下降为零,这意味着发送方已经退出了,并等待接收方确认所有已传送数据。这可能表明接收端已经不堪重负了。

tcp.analysis.bytes_in_flight:某一时间点网络上未确认字节数。未确认字节数不能超过你的TCP窗口大小(定义于最初3此TCP握手),为了最大化吞吐量你想要获得尽可能接近TCP窗口大小。如果看到连续低于TCP窗口大小,可能意味着报文丢失或路径上其他影响吞吐量的问题。

tcp.analysis.ack_rtt:衡量抓取的TCP报文与相应的ACK。如果这一时间间隔比较长那可能表示某种类型的网络延时(报文丢失,拥塞,等等)。

在抓包中应用以上一些过滤条件:

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

注意:Graph 1是HTTP总体流量,显示形式为packets/tick,时间间隔1秒。Graph 2是TCP丢失报文片段。Graph 3是TCP 重复ACK。Graph 4是TCP重传。

从这张图可以看到:相比于整体HTTP流量,有很多数量的重传以及重复ACK。从这张图中,可以看到这些事件发生的时间点,以及在整体流量中所占的比例。

函数:

IO Graphs有六个可用函数:SUM, MIN, AVG, MAX, COUNT, LOAD。

MIN( ), AVG( ), MAX( )

首先看一下帧之间的最小,平均和最大时间,这对于查看帧/报文之间的延时非常有用。我们可以将这些函数结合“frame.time_delta过滤条件看清楚帧延时,并使得往返延时更为明显。如果抓包文件中包含不同主机之间的多个会话,而只想知道其中一个pair,可将“frame.time_delta”结合源和目标主机条件如“ip.addr==x.x.x.x &&ip.addr==y.y.y.y”。如下图所示:

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

我们做了以下步骤:

  • 将Y轴设置为“Advanced”,让Caculation域可见。不做这一步就看不到计算选项。
  • X轴时间间隔1秒,所以每个柱状图代表1秒间隔的计算结果。
  • 过滤出两个特定IP地址的HTTP会话,使用条件:“(ip.addr==192.168.1.4&& ip.addr==128.173.87.169) && http”。
  • 使用3个不同的graph,分别计算Min(), Avg(), Max()。
  • 对每一个计算结果应用条件“frame.time_delta”,将style设置成“FBar”,显示效果最佳。

从上图可见,在第106秒时数据流的MAX frame.delta_time达到0.7秒,这是一个严重延时并且导致了报文丢失。如果想要深入研究,只需要点击图中这一点,就会跳转至相应帧。对应 于本例抓包文件中第1003个报文。如果你看见帧之间平均延时相对较低但突然某一点延时很长,可点击这一帧,看看这一时间点究竟发生了什么。

Count( )       

此函数计算时间间隔内事件发生的次数,在查看TCP分析标识符时很有用,例如重传。例图如下:

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

Sum( )         

该函数统计事件的累加值。有两种常见的用例是看在捕获TCP数据量,以及检查TCP序列号。让我们看看第一个TCP长度的例子。创建两个图,一个使 用客户端IP 192.168.1.4为源,另一个使用客户端IP作为一个目的地址。每个图我们将sum()功能结合tcp.len过滤条件。拆分成两个不同的图我们就 可以看到在一个单一的方向移动的数据量。

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

从图表中我们可以看到,发送到客户端的数据量(IP.DST = = 192.168.1.4过滤条件)比来自客户端的数据量要高。在图中红色表示。黑条显示从客户端到服务器的数据,相对数据量很小。这是有道理的,因为客户 只是请求文件和收到之后发送确认数据,而服务器发送大文件。很重要的一点是,如果你交换了图的顺序,把客户端的IP作为图1的目标地址,并且客户端IP作 为图2的源地址,采用了FBAR的时候可能看不到正确的数据显示。因为图编号越低表示在前台显示,可能会覆盖较高图号。

现在让我们看一下同一个数据包丢失和延迟的TCP序列号。

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

可以在图中看到若干峰值和下降,表示TCP传输有问题。与正常TCP报文比较:

 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

这张图可以看到TCP序列号相当稳定地增加,表示传输平稳,没有过多重传或丢包。

 本文由用户 jopen 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
 转载本站原创文章,请注明出处,并保留原始链接、图片水印。
 本站是一个以用户分享为主的开源技术平台,欢迎各类分享!
 本文地址:https://www.open-open.com/lib/view/open1405499520828.html
Wireshark 网络技术