分布式机器学习算法的集合:Mahout
Mahout知名度很高,是Apache基金资助的重要项目,Mahout是一个分布式机器学习算法的集合,协同过滤只是其中的一部分。除了被称为Taste的分布式协同过滤的实现(Hadoop-based,另有pure Java版本),Mahout里还有其他常见的机器学习算法的分布式实现方案。当前拥有:
- Collaborative Filtering
- User and Item based recommenders
- K-Means, Fuzzy K-Means clustering
- Mean Shift clustering
- Dirichlet process clustering
- Latent Dirichlet Allocation
- Singular value decomposition
- Parallel Frequent Pattern mining
- Complementary Naive Bayes classifier
- Random forest decision tree based classifier
- High performance java collections (previously colt collections)
- A vibrant community
- and many more cool stuff to come by this summer thanks to Google summer of code
另外Mahout的作者之一Sean Owen基于Mahout开发了一个试验性质的推荐系统,称为Myrrix, 可以看这里:
http://myrrix.com/quick-start/ 本文由用户 jopen 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!