Hadoop的Jython封装 Happy
Hadoop + Python = Happy
Happy 为Jython开发者使用Hadoop框架提供了便利,Happy框架封装了Hadoop的复杂调用过程,让Map-Reduce开发变得更为容易。Happy中的Map-Reduce作业过程在子类happy.HappyJob中定义,当用户创建类实例后,设置作业任务的输入输出参数,然后调用run()方法即可启动分治规约处理,此时,Happy框架将序列化用户的作业实例,并将任务及相应依赖库拷贝到Hadoop集群执行。目前,Happy框架已被数据集成站点 freebase.com采纳,用于进行站点的数据挖掘与分析工作。
import sys, happy, happy.log happy.log.setLevel("debug") log = happy.log.getLogger("wordcount") class WordCount(happy.HappyJob): def __init__(self, inputpath, outputpath): happy.HappyJob.__init__(self) self.inputpaths = inputpath self.outputpath = outputpath self.inputformat = "text" def map(self, records, task): for _, value in records: for word in value.split(): task.collect(word, "1") def reduce(self, key, values, task): count = 0; for _ in values: count += 1 task.collect(key, str(count)) log.debug(key + ":" + str(count)) happy.results["words"] = happy.results.setdefault("words", 0) + count happy.results["unique"] = happy.results.setdefault("unique", 0) + 1 if __name__ == "__main__": if len(sys.argv) < 3: print "Usage: <inputpath> <outputpath>" sys.exit(-1) wc = WordCount(sys.argv[1], sys.argv[2]) results = wc.run() print str(sum(results["words"])) + " total words" print str(sum(results["unique"])) + " unique words"
本文由用户 openkk 自行上传分享,仅供网友学习交流。所有权归原作者,若您的权利被侵害,请联系管理员。
转载本站原创文章,请注明出处,并保留原始链接、图片水印。
本站是一个以用户分享为主的开源技术平台,欢迎各类分享!