| 注册
请输入搜索内容

热门搜索

Java Linux MySQL PHP JavaScript Hibernate jQuery Nginx
fdpg
10年前发布

JavaScript SHA1加密算法实现详细代码

/*   * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined   * in FIPS 180-1   * Version 2.2 Copyright Paul Johnston 2000 - 2009.   * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet   * Distributed under the BSD License   * See http://pajhome.org.uk/crypt/md5 for details.   * http://www.sharejs.com   */    /*   * Configurable variables. You may need to tweak these to be compatible with   * the server-side, but the defaults work in most cases.   */  var hexcase = 0;  /* hex output format. 0 - lowercase; 1 - uppercase        */  var b64pad  = ""; /* base-64 pad character. "=" for strict RFC compliance   */    /*   * These are the functions you'll usually want to call   * They take string arguments and return either hex or base-64 encoded strings   */  function hex_sha1(s)    { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }  function b64_sha1(s)    { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }  function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }  function hex_hmac_sha1(k, d)    { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }  function b64_hmac_sha1(k, d)    { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }  function any_hmac_sha1(k, d, e)    { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }    /*   * Perform a simple self-test to see if the VM is working   */  function sha1_vm_test()  {    return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";  }    /*   * Calculate the SHA1 of a raw string   */  function rstr_sha1(s)  {    return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));  }    /*   * Calculate the HMAC-SHA1 of a key and some data (raw strings)   */  function rstr_hmac_sha1(key, data)  {    var bkey = rstr2binb(key);    if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);      var ipad = Array(16), opad = Array(16);    for(var i = 0; i < 16; i++)    {      ipad[i] = bkey[i] ^ 0x36363636;      opad[i] = bkey[i] ^ 0x5C5C5C5C;    }      var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);    return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));  }    /*   * Convert a raw string to a hex string   */  function rstr2hex(input)  {    try { hexcase } catch(e) { hexcase=0; }    var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";    var output = "";    var x;    for(var i = 0; i < input.length; i++)    {      x = input.charCodeAt(i);      output += hex_tab.charAt((x >>> 4) & 0x0F)             +  hex_tab.charAt( x        & 0x0F);    }    return output;  }    /*   * Convert a raw string to a base-64 string   */  function rstr2b64(input)  {    try { b64pad } catch(e) { b64pad=''; }    var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";    var output = "";    var len = input.length;    for(var i = 0; i < len; i += 3)    {      var triplet = (input.charCodeAt(i) << 16)                  | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)                  | (i + 2 < len ? input.charCodeAt(i+2)      : 0);      for(var j = 0; j < 4; j++)      {        if(i * 8 + j * 6 > input.length * 8) output += b64pad;        else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);      }    }    return output;  }    /*   * Convert a raw string to an arbitrary string encoding   */  function rstr2any(input, encoding)  {    var divisor = encoding.length;    var remainders = Array();    var i, q, x, quotient;      /* Convert to an array of 16-bit big-endian values, forming the dividend */    var dividend = Array(Math.ceil(input.length / 2));    for(i = 0; i < dividend.length; i++)    {      dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);    }      /*     * Repeatedly perform a long division. The binary array forms the dividend,     * the length of the encoding is the divisor. Once computed, the quotient     * forms the dividend for the next step. We stop when the dividend is zero.     * All remainders are stored for later use.     */    while(dividend.length > 0)    {      quotient = Array();      x = 0;      for(i = 0; i < dividend.length; i++)      {        x = (x << 16) + dividend[i];        q = Math.floor(x / divisor);        x -= q * divisor;        if(quotient.length > 0 || q > 0)          quotient[quotient.length] = q;      }      remainders[remainders.length] = x;      dividend = quotient;    }      /* Convert the remainders to the output string */    var output = "";    for(i = remainders.length - 1; i >= 0; i--)      output += encoding.charAt(remainders[i]);      /* Append leading zero equivalents */    var full_length = Math.ceil(input.length * 8 /                                      (Math.log(encoding.length) / Math.log(2)))    for(i = output.length; i < full_length; i++)      output = encoding[0] + output;      return output;  }    /*   * Encode a string as utf-8.   * For efficiency, this assumes the input is valid utf-16.   */  function str2rstr_utf8(input)  {    var output = "";    var i = -1;    var x, y;      while(++i < input.length)    {      /* Decode utf-16 surrogate pairs */      x = input.charCodeAt(i);      y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;      if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)      {        x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);        i++;      }        /* Encode output as utf-8 */      if(x <= 0x7F)        output += String.fromCharCode(x);      else if(x <= 0x7FF)        output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),                                      0x80 | ( x         & 0x3F));      else if(x <= 0xFFFF)        output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),                                      0x80 | ((x >>> 6 ) & 0x3F),                                      0x80 | ( x         & 0x3F));      else if(x <= 0x1FFFFF)        output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),                                      0x80 | ((x >>> 12) & 0x3F),                                      0x80 | ((x >>> 6 ) & 0x3F),                                      0x80 | ( x         & 0x3F));    }    return output;  }    /*   * Encode a string as utf-16   */  function str2rstr_utf16le(input)  {    var output = "";    for(var i = 0; i < input.length; i++)      output += String.fromCharCode( input.charCodeAt(i)        & 0xFF,                                    (input.charCodeAt(i) >>> 8) & 0xFF);    return output;  }    function str2rstr_utf16be(input)  {    var output = "";    for(var i = 0; i < input.length; i++)      output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,                                     input.charCodeAt(i)        & 0xFF);    return output;  }    /*   * Convert a raw string to an array of big-endian words   * Characters >255 have their high-byte silently ignored.   */  function rstr2binb(input)  {    var output = Array(input.length >> 2);    for(var i = 0; i < output.length; i++)      output[i] = 0;    for(var i = 0; i < input.length * 8; i += 8)      output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);    return output;  }    /*   * Convert an array of big-endian words to a string   */  function binb2rstr(input)  {    var output = "";    for(var i = 0; i < input.length * 32; i += 8)      output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);    return output;  }    /*   * Calculate the SHA-1 of an array of big-endian words, and a bit length   */  function binb_sha1(x, len)  {    /* append padding */    x[len >> 5] |= 0x80 << (24 - len % 32);    x[((len + 64 >> 9) << 4) + 15] = len;      var w = Array(80);    var a =  1732584193;    var b = -271733879;    var c = -1732584194;    var d =  271733878;    var e = -1009589776;      for(var i = 0; i < x.length; i += 16)    {      var olda = a;      var oldb = b;      var oldc = c;      var oldd = d;      var olde = e;        for(var j = 0; j < 80; j++)      {        if(j < 16) w[j] = x[i + j];        else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);        var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),                         safe_add(safe_add(e, w[j]), sha1_kt(j)));        e = d;        d = c;        c = bit_rol(b, 30);        b = a;        a = t;      }        a = safe_add(a, olda);      b = safe_add(b, oldb);      c = safe_add(c, oldc);      d = safe_add(d, oldd);      e = safe_add(e, olde);    }    return Array(a, b, c, d, e);    }    /*   * Perform the appropriate triplet combination function for the current   * iteration   */  function sha1_ft(t, b, c, d)  {    if(t < 20) return (b & c) | ((~b) & d);    if(t < 40) return b ^ c ^ d;    if(t < 60) return (b & c) | (b & d) | (c & d);    return b ^ c ^ d;  }    /*   * Determine the appropriate additive constant for the current iteration   */  function sha1_kt(t)  {    return (t < 20) ?  1518500249 : (t < 40) ?  1859775393 :           (t < 60) ? -1894007588 : -899497514;  }    /*   * Add integers, wrapping at 2^32. This uses 16-bit operations internally   * to work around bugs in some JS interpreters.   */  function safe_add(x, y)  {    var lsw = (x & 0xFFFF) + (y & 0xFFFF);    var msw = (x >> 16) + (y >> 16) + (lsw >> 16);    return (msw << 16) | (lsw & 0xFFFF);  }    /*   * Bitwise rotate a 32-bit number to the left.   */  function bit_rol(num, cnt)  {    return (num << cnt) | (num >>> (32 - cnt));  }