| 注册
请输入搜索内容

热门搜索

Java Linux MySQL PHP JavaScript Hibernate jQuery Nginx
fdpg
10年前发布

JavaScript SHA-256加密算法详细代码

/*   * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined   * in FIPS 180-2   * Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.   * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet   * Distributed under the BSD License   * See http://pajhome.org.uk/crypt/md5 for details.   * Also http://anmar.eu.org/projects/jssha2/   */    /*   * Configurable variables. You may need to tweak these to be compatible with   * the server-side, but the defaults work in most cases.   */  var hexcase = 0;  /* hex output format. 0 - lowercase; 1 - uppercase        */  var b64pad  = ""; /* base-64 pad character. "=" for strict RFC compliance   */    /*   * These are the functions you'll usually want to call   * They take string arguments and return either hex or base-64 encoded strings   */  function hex_sha256(s)    { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }  function b64_sha256(s)    { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }  function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }  function hex_hmac_sha256(k, d)    { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }  function b64_hmac_sha256(k, d)    { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }  function any_hmac_sha256(k, d, e)    { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }    /*   * Perform a simple self-test to see if the VM is working   */  function sha256_vm_test()  {    return hex_sha256("abc").toLowerCase() ==              "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";  }    /*   * Calculate the sha256 of a raw string   */  function rstr_sha256(s)  {    return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));  }    /*   * Calculate the HMAC-sha256 of a key and some data (raw strings)   */  function rstr_hmac_sha256(key, data)  {    var bkey = rstr2binb(key);    if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);      var ipad = Array(16), opad = Array(16);    for(var i = 0; i < 16; i++)    {      ipad[i] = bkey[i] ^ 0x36363636;      opad[i] = bkey[i] ^ 0x5C5C5C5C;    }      var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);    return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));  }    /*   * Convert a raw string to a hex string   */  function rstr2hex(input)  {    try { hexcase } catch(e) { hexcase=0; }    var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";    var output = "";    var x;    for(var i = 0; i < input.length; i++)    {      x = input.charCodeAt(i);      output += hex_tab.charAt((x >>> 4) & 0x0F)             +  hex_tab.charAt( x        & 0x0F);    }    return output;  }    /*   * Convert a raw string to a base-64 string   */  function rstr2b64(input)  {    try { b64pad } catch(e) { b64pad=''; }    var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";    var output = "";    var len = input.length;    for(var i = 0; i < len; i += 3)    {      var triplet = (input.charCodeAt(i) << 16)                  | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)                  | (i + 2 < len ? input.charCodeAt(i+2)      : 0);      for(var j = 0; j < 4; j++)      {        if(i * 8 + j * 6 > input.length * 8) output += b64pad;        else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);      }    }    return output;  }    /*   * Convert a raw string to an arbitrary string encoding   */  function rstr2any(input, encoding)  {    var divisor = encoding.length;    var remainders = Array();    var i, q, x, quotient;      /* Convert to an array of 16-bit big-endian values, forming the dividend */    var dividend = Array(Math.ceil(input.length / 2));    for(i = 0; i < dividend.length; i++)    {      dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);    }      /*     * Repeatedly perform a long division. The binary array forms the dividend,     * the length of the encoding is the divisor. Once computed, the quotient     * forms the dividend for the next step. We stop when the dividend is zero.     * All remainders are stored for later use.     */    while(dividend.length > 0)    {      quotient = Array();      x = 0;      for(i = 0; i < dividend.length; i++)      {        x = (x << 16) + dividend[i];        q = Math.floor(x / divisor);        x -= q * divisor;        if(quotient.length > 0 || q > 0)          quotient[quotient.length] = q;      }      remainders[remainders.length] = x;      dividend = quotient;    }      /* Convert the remainders to the output string */    var output = "";    for(i = remainders.length - 1; i >= 0; i--)      output += encoding.charAt(remainders[i]);      /* Append leading zero equivalents */    var full_length = Math.ceil(input.length * 8 /                                      (Math.log(encoding.length) / Math.log(2)))    for(i = output.length; i < full_length; i++)      output = encoding[0] + output;      return output;  }    /*   * Encode a string as utf-8.   * For efficiency, this assumes the input is valid utf-16.   */  function str2rstr_utf8(input)  {    var output = "";    var i = -1;    var x, y;      while(++i < input.length)    {      /* Decode utf-16 surrogate pairs */      x = input.charCodeAt(i);      y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;      if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)      {        x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);        i++;      }        /* Encode output as utf-8 */      if(x <= 0x7F)        output += String.fromCharCode(x);      else if(x <= 0x7FF)        output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),                                      0x80 | ( x         & 0x3F));      else if(x <= 0xFFFF)        output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),                                      0x80 | ((x >>> 6 ) & 0x3F),                                      0x80 | ( x         & 0x3F));      else if(x <= 0x1FFFFF)        output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),                                      0x80 | ((x >>> 12) & 0x3F),                                      0x80 | ((x >>> 6 ) & 0x3F),                                      0x80 | ( x         & 0x3F));    }    return output;  }    /*   * Encode a string as utf-16   */  function str2rstr_utf16le(input)  {    var output = "";    for(var i = 0; i < input.length; i++)      output += String.fromCharCode( input.charCodeAt(i)        & 0xFF,                                    (input.charCodeAt(i) >>> 8) & 0xFF);    return output;  }    function str2rstr_utf16be(input)  {    var output = "";    for(var i = 0; i < input.length; i++)      output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,                                     input.charCodeAt(i)        & 0xFF);    return output;  }    /*   * Convert a raw string to an array of big-endian words   * Characters >255 have their high-byte silently ignored.   */  function rstr2binb(input)  {    var output = Array(input.length >> 2);    for(var i = 0; i < output.length; i++)      output[i] = 0;    for(var i = 0; i < input.length * 8; i += 8)      output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);    return output;  }    /*   * Convert an array of big-endian words to a string   */  function binb2rstr(input)  {    var output = "";    for(var i = 0; i < input.length * 32; i += 8)      output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);    return output;  }    /*   * Main sha256 function, with its support functions   */  function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}  function sha256_R (X, n) {return ( X >>> n );}  function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}  function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}  function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}  function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}  function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}  function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}  function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}  function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}  function sha256_Gamma0512(x) {return (sha256_S(x, 1)  ^ sha256_S(x, 8) ^ sha256_R(x, 7));}  function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}    var sha256_K = new Array  (    1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,    -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,    1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,    264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,    -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,    113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,    1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,    -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,    430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,    1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,    -1866530822, -1538233109, -1090935817, -965641998  );    function binb_sha256(m, l)  {    var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,                         1359893119, -1694144372, 528734635, 1541459225);    var W = new Array(64);    var a, b, c, d, e, f, g, h;    var i, j, T1, T2;      /* append padding */    m[l >> 5] |= 0x80 << (24 - l % 32);    m[((l + 64 >> 9) << 4) + 15] = l;      for(i = 0; i < m.length; i += 16)    {      a = HASH[0];      b = HASH[1];      c = HASH[2];      d = HASH[3];      e = HASH[4];      f = HASH[5];      g = HASH[6];      h = HASH[7];        for(j = 0; j < 64; j++)      {        if (j < 16) W[j] = m[j + i];        else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),                                              sha256_Gamma0256(W[j - 15])), W[j - 16]);          T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),                                                            sha256_K[j]), W[j]);        T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));        h = g;        g = f;        f = e;        e = safe_add(d, T1);        d = c;        c = b;        b = a;        a = safe_add(T1, T2);      }        HASH[0] = safe_add(a, HASH[0]);      HASH[1] = safe_add(b, HASH[1]);      HASH[2] = safe_add(c, HASH[2]);      HASH[3] = safe_add(d, HASH[3]);      HASH[4] = safe_add(e, HASH[4]);      HASH[5] = safe_add(f, HASH[5]);      HASH[6] = safe_add(g, HASH[6]);      HASH[7] = safe_add(h, HASH[7]);    }    return HASH;  }    function safe_add (x, y)  {    var lsw = (x & 0xFFFF) + (y & 0xFFFF);    var msw = (x >> 16) + (y >> 16) + (lsw >> 16);    return (msw << 16) | (lsw & 0xFFFF);  }